adplus-dvertising
Connect with us

Science

UArizona studying plants' communication with their environment – Cronkite News

Published

 on



[embedded content]

TUCSON – The machine, with sharp teeth and a long metal rod, sounds like a kitchen blender, but this is far from your average appliance.

“This is a tissue homogenizer,” said Jesse Woodson, an associate professor at the University of Arizona’s School of Plant Sciences.

The “very fancy blender” is part of a project conducted by scientists at UArizona to understand how plants talk with each other. The ultimate goal is to engineer plants to help them survive a warmer world.

“We want to be able to establish communication with plants,” Woodson said. “And in order to do that, we need to know how plants are thinking about their environment and be able to sense their environment.”

Woodson and his team of students working in the lab are part of a much larger network of researchers. The National Science Foundation in October gave a $25 million grant to teams at UArizona, Cornell University and the Boyce Thompson Institute, both in New York, and the University of Illinois Urbana-Champaign to study plant communication in hopes of modifying plants for a future environment that’s likely to be warmer and drier.

(Audio by Emma VandenEinde/Cronkite News)

Their research is part of the foundation’s new Center for Research on Programmable Plant Systems, or CROPPS. The scientists are working to better predict and manipulate agriculture at the molecular level to improve productivity and sustainability, according to the National Science Foundation. The transdisciplinary effort brings together scientists, engineers and computer scientists to create electronic systems that can monitor and control the responses of plants.

UArizona received $3.5 million to study plant genes and how they react biologically to their environment. The team will use data analytics, but as the project starts up, they want to understand the language of plants first.

Although their communication is not audible, plants send internal signals all the time.

“They might be sending those signals internally within the body of the plant to help the shoots understand what’s going on in the roots,” said Rebecca Mosher, the lead investigator on the CROPPS project for UArizona. “They might be sending those signals to microbes in the soil to try to recruit those microbes. And so we want to understand those signals so that we can maybe tap into them and communicate with the plants ourselves.”

These internal signals are similar to the signals our brains send us when we are stressed or in need of nutrition. However, Woodson said, plants lack one response that humans have. Plants can’t move.

“If we want to get away from something, we can run away. But a plant has to stay there and they have to deal with whatever happens,” he said. “So if it’s a hot day, it’s a dry day, there’s too much sun, if there’s not enough sun, the plant needs to do something about that in order to grow.”

When the plant is forced to grow in one spot, it creates a “survival guide” that it passes down to the next plant, which then learns how to conserve resources and adapt to its environment.

“You can’t always go by the looks or how big its brain is, but how much it can alter itself in order to fix the environment and with it in which it has to live,” Woodson said. “It’s going to have to deal with that at a very genetic level. So they need lots of genes and a lot of information stored in those cells to be able to grow and do well.”

Rebecca Mosher is the lead investigator for the UArizona team participating in a multi-university project funded by the National Science Foundation to understand how plants communicate with their environment. (Photo by Emma VandenEinde/Cronkite News)

Experimenting to understand

Before the plants —which include rice and soybeans —enter the lab, they grow in greenhouses on the roof of a parking garage south of the Tucson campus. In those greenhouses, the plants’ environment is altered.

“We might give it very high light or lots of heat, a whole variety of abiotic stresses,” Mosher said. “We can also infect it with pathogens, so a biotic stress. And then we’ll collect that tissue and take it into the laboratory.”

Inside the lab, the team extracts cells using different methods – from spinning plants in a centrifuge to jostling them in vials filled with beads. Then researchers look at cells under the microscope.

Related story

The tissue homogenizer – a rod with sharp teeth at the end – is one of the most important devices researchers use because it cuts through the tough plant tissue to get to a plant’s cells. Inside those cells are chloroplasts, which are responsible for sensing light in its environment and performing photosynthesis.

“A lot of what we’re trying to look at is how components within cells, how cells do photosynthesis and respond to the environment,” Woodson said. “This homogenizer is basically a very fancy blender that breaks open the cells so we can pull out those chloroplasts to do experiments in the lab.”

Cristian Salazar De Leon, one of the graduate students on Woodson’s team, said the chloroplasts can reveal a lot about how plants react in high heat situations.

“Most of us look into a pathway where chloroplasts do the photosynthesis in plant cells (and look at) how they’re recycled, how they’re damaged and how the plant deals with those damaged cells,” Salazar De Leon said.

From there, the scientists can find which genes are responsible for helping the plant grow in harsh environments, then cross-pollinate plants to respond similarly. Salazar De Leon is working to prove that removing a particular gene that encodes for a specific enzyme can kill a plant. He hopes to find those patterns in other plants as well.

“This is just like one piece of an entire biochemical pathway that allows plants to be able to respond to UV light stress,” he said.

Cristian Salazar De Leon cross-pollinates Arabidopsis plants under the microscope. The small flowering plants lack a gene that helps them live under high-stress conditions. (Photo by Emma VandenEinde/Cronkite News)

Arizona’s climate perfect for testing

Although the NSF-funded universities each have their own lab for testing, Arizona’s climate offers a unique environment for experimentation.

“Our environment is incredibly hot, incredibly arid, the world is going to be turning more and more like Arizona as the planet heats up,” Woodson said.

Last year was the sixth warmest on record, according to the National Oceanic and Atmospheric Association. And 2020 was even hotter – it was the second warmest year on record. Temperatures in December 2021 made it the fifth-warmest December in 142 years.

As temperatures increase because of human activity that contributes to global warming, these experiments with plants could help scientists better support plants and crops in the future that are more resilient to temperature changes.

“If we can understand how plants grow with limited water in really hot environments, perhaps we can create new breeds and varieties that would be able to grow better,” Woodson said.

The UArizona project is expected to last five years. More research, the scientists say, could unlock more about plants and how they are adapting to climate change.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending