adplus-dvertising
Connect with us

Science

UTIAS’s Space Flight Laboratory celebrates 25 years of successful missions and satellite projects

Published

 on

A team of researchers at the University of Toronto Institute for Aerospace Studies (UTIAS) is celebrating 25 years of designing advanced micro- and nanosatellites for a broad range of missions — from scientific to commercial and government applications.   

Our laboratory engages in experimental technology research tied to real space missions,” says Professor Robert Zee, Director of the Space Flight Laboratory (SFL).   

We have many satellites under development at any given time to deliver innovative spacecraft for new and emerging applications worldwide.”  

SFL employs what Zee calls a ‘teaching-hospital’ model. This approach enables graduate students to work as apprentices designing and building low-cost satellites that are 3 to 500 kilograms in size, which are then implemented in sponsor-driven space missions with critical implications.  

300x250x1

Since the laboratory’s inception in 1998, SFL researchers have launched 69 distinct micro- and nano-class satellites, with 27 additional projects currently under development or awaiting launch.  

SFL has also accomplished many technological and scientific firsts during these past 25 years, including the building of Canada’s first space telescope, the MOST microsatellite. 

Commissioned by the Canadian Space Agency and designed in collaboration with Dynacon, the 53-kg MOST microsatellite was used to study brightness oscillations in solar-type stars and was responsible for many astronomical discoveries.  

SFL also built the BRITE Constellation — a fleet of six, cost-effective 7-kg nanosatellites. The mission was launched in 2013 through an equal partnership between Canada, Austria and Poland.  

“BRITE is the world’s first space astronomy constellation. It performed scientific observations, looking at the most luminous stars that you can’t view with ground-based telescopes because of the geometry of the bright stars in space,” says Zee. “So far, there have been more than 100 papers written about astronomical discoveries made through this mission.”  

The CanX-4 and CanX-5 nanosatellites, which demonstrated formation flying capability at low cost. (Photo: UTIAS/SFL)

Some of Zee’s projects make use of innovations in formation flight — that is, the coordination of multiple smaller satellites working together to accomplish the goals of a larger, more expensive satellite.  

One of the earliest were CanX-4 and CanX-5, two nanosatellites built and launched in 2014 with funding from Defence Research and Development Canada, Canadian Space Agency, MDA, Ontario Centres of Innovation and the Natural Sciences and Engineering Research Council to demonstrate this capability at low cost.  

Formation flying enables many advanced sensing capabilities using smaller satellites, says Zee, from radio frequency geolocation to high-resolution imaging interferometry — an approach to measurement that uses the interference of waves, such as light, radio and sound waves. For example, fleets of satellites can increase the effective aperture for space interferometry through distributed sensing over multiple smaller satellites, instead of using one large aperture in a single big satellite. 

“Using two 7-kg spacecraft, CanX-4 and CanX-5, we demonstrated formation flying accuracies and position knowledge that could not previously be achieved at such a low price point,” he says. “This innovation enables individuals with small budgets to use formation flying in their missions.”   

In the past three decades, SFL has built a productive relationship with the Norwegian Space Agency and the Norwegian Defence Research Establishment, which has led to the development and launch of seven distinct spacecraft for tracking ocean-going vessels, technology demonstration and scientific observation. The team developed Norway’s first satellite, AISSat-1, which launched in 2010 and operated in low-Earth orbit for 12 years, detecting ships and collecting messages from maritime vessels.  

In April 2023, another satellite for the Norwegian Space Agency, NorSat-TD, was launched. This 30-kg spacecraft features a new ion propulsion system, a precise positioning payload that allows for more precise position determination than traditional GPS and optical communications technology from developers across Europe.  

The satellite also features a very high frequency (VHF) data exchange system that allows two-way communication with ships. A key to making this system work was an SFL-developed deployable Yagi antenna with a deployed volume greater than the satellite itself.  

The deployable VHF Yagi antenna technology on NorSat-TD grew out of a previous collaboration with Professor Sean Hum (ECE) to develop a similar deployable VHF Yagi for the NorSat-2 microsatellite. The VHF Yagi antenna provides the gain required for two-way communication with ships.  

“Our team at UTIAS did the mechanical design and Professor Hum did the electrical and radio frequency design,” says Zee. “That was a very fruitful collaboration where we were able to mutually leverage each other’s knowledge and research to deploy something new and innovative into space for the first time globally.”   

Zee believes that the team’s continued success is due to a consistent approach that focuses on sticking to its core principles. These include understanding the environment that they are going into and developing robust designs suited to it; testing at all levels of integration, from the unit level all the way up to the system level; and being open to working with various clients without shying away from what has never been done before.  

“We have always been open to anyone needing a state-of-the-art, frontier-pushing satellite. We service the world — all sectors and all applications,” says Zee.  

“We continue to be out-of-box, non-insular thinkers, open to working in different application areas and look forward to finding new ways to push the envelope of new technologies, algorithms and techniques to expand the frontier of space for all.”

 

728x90x4

Source link

Continue Reading

Science

SpaceX sends 23 Starlink satellites into low-Earth orbit

Published

 on

April 23 (UPI) — SpaceX launched 23 Starlink satellites into low-Earth orbit Tuesday evening from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.

Liftoff occurred at 6:17 EDT with a SpaceX Falcon 9 rocket sending the payload of 23 Starlink satellites into orbit.

The Falcon 9 rocket’s first-stage booster landed on an autonomous drone ship in the Atlantic Ocean after separating from the rocket’s second stage and its payload.

The entire mission was scheduled to take about an hour and 5 minutes to complete from launch to satellite deployment.

300x250x1

The mission was the ninth flight for the first-stage booster that previously completed five Starlink satellite-deployment missions and three other missions.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

NASA Celebrates As 1977’s Voyager 1 Phones Home At Last

Published

 on

Voyager 1 has finally returned usable data to NASA from outside the solar system after five months offline.

Launched in 1977 and now in its 46th year, the probe has been suffering from communication issues since November 14. The same thing also happened in 2022. However, this week, NASA said that engineers were finally able to get usable data about the health and status of its onboard engineering systems.

Slow Work

Fixing Voyager 1 has been slow work. It’s currently over 15 billion miles (24 billion kilometers) from Earth, which means a radio message takes about 22.5 hours to reach it—and the same again to receive an answer.

The problem appears to have been its flight data subsystem, one of one of the spacecraft’s three onboard computers. Its job is to package the science and engineering data before it’s sent to Earth. Since the computer chip that stores its memory and some of its code is broken, engineers had to re-insert that code into a new location.

300x250x1

Next up for engineers at NASA’s Jet Propulsion Laboratory in California is to adjust other parts of the FDS software so Voyager 1 can return to sending science data.

Beyond The ‘Heliopause’

The longest-running and most distant spacecraft in history, Voyager 1, was launched on September 5, 1977, while its twin spacecraft, Voyager 2, was launched a little earlier on August 20, 1977. Voyager 2—now 12 billion miles away and traveling more slowly—continues to operate normally.

Both are now beyond what astronomers call the heliopause—a protective bubble of particles and magnetic fields created by the sun, which is thought to represent the sun’s farthest influence. Voyager 1 got to the heliopause in 2012 and Voyager 2 in 2018.

Pale Blue Dot

Since their launch from Cape Canaveral, Florida, aboard Titan-Centaur rockets, Voyager 1 and Voyager 2 have had glittering careers. Both photographed Jupiter and Saturn in 1979 and 1980 before going their separate ways. Voyager 1 could have visited Pluto, but that was sacrificed so scientists could get images of Saturn’s moon, Titan, a maneuver that made it impossible for it to reach any other body in the solar system. Meanwhile, Voyager 2 took slingshots around the planets to also image Uranus in 1986 and Neptune in 1989—the only spacecraft ever to image the two outer planets.

On February 14, 1990, when 3.7 billion miles from Earth, Voyager 1 turned its cameras back towards the sun and took an image that included our planet as “a mote of dust suspended in a sunbeam.” Known as the “Pale Blue Dot,” it’s one of the most famous photos ever taken. It was remastered in 2019.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

NASA hears from Voyager 1, the most distant spacecraft from Earth, after months of quiet

Published

 on

 

CAPE CANAVERAL, Fla. (AP) – NASA has finally heard back from Voyager 1 again in a way that makes sense.

The most distant spacecraft from Earth stopped sending back understandable data last November. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft’s coding to work around the trouble.

NASA’s Jet Propulsion Laboratory in Southern California declared success after receiving good engineering updates late last week. The team is still working to restore transmission of the science data.

300x250x1

It takes 22 1/2 hours to send a signal to Voyager 1, more than 15 billion miles (24 billion kilometers) away in interstellar space. The signal travel time is double that for a round trip.

Contact was never lost, rather it was like making a phone call where you can’t hear the person on the other end, a JPL spokeswoman said Tuesday.

Launched in 1977 to study Jupiter and Saturn, Voyager 1 has been exploring interstellar space – the space between star systems – since 2012. Its twin, Voyager 2, is 12.6 billion miles (20 billion kilometers) away and still working fine.

 

728x90x4

Source link

Continue Reading

Trending