adplus-dvertising
Connect with us

Science

Western University lands contract to develop space mission imaging system – The London Free Press

Published

 on



Western Professor Jayshri Sabarinathan and Western Space Director Gord Osinki show off a prototype of a camera that will one day be a part of international missions to the moon. (HEATHER RIVERS, The London Free Press)


Western University researchers have an inside track on developing sensory technology that could be used on future space missions.

A team led by the university’s space director Gordon Osinski was chosen by the Canadian Space Agency to develop an “integrated vision system” for rover missions, Western announced Tuesday.

Osinski describes the technology — that would document the surface of the moon and help select samples to bring back to Earth — as the “eyes” of the lunar rovers that could be launched during the next few years.

300x250x1

“One of our ultimate goals is building hardware and launching it into space and being involved in space missions,” he said. “Getting this contract is the first step to — hopefully, eventually — building a camera system that will go on a rover on the surface of the moon.”

The $700,000 contract will fund a team of research scientists, post-doctoral students and graduate students from the faculties of science and engineering which will work on developing the system.

The camera system would use imaging technology to overcome the lack of sunlight on the moon to collect data and help guide and control the rover.

“We’ve been working on a number of concepts for science instruments for over a decade here at Western. A lot of them do revolve around imaging systems,” Osinski said.

The team’s work during the next 18 months will be designing technology that will survive the rigours of space, he said.

“When we build a space camera, it will be multimillions of dollars, everything space-qualified to withstand extreme temperatures and the radiation in space,” Osinski said.  “So, we’re designing this concept with that in mind.”

The team’s mission is to advance the design and technology to a point where they have a prototype “cemented in stone” so they can seek additional funding, he said.

The university’s funding from the Canadian Space Agency comes from a five-year $150-million program to help small and medium-sized businesses develop technologies to be used in lunar orbit and on the moon’s surface.

Western will work with MDA Vision Systems and Sensors on the project.

The university launched the Institute for Earth and Space Exploration last summer with a goal of becoming an international hub for Earth and space exploration research, development and training.

“The institute has taken us to the next level. It signifies that space is an important area across campus,” Osinski said. “This (contract) really established Western as an epicentre for space exploration, research and exploration.”

NASA has committed to return humans to the moon by 2024 in a program known as Artemis. The U.S. space agency also has set a goal of landing on Mars by the 2030s.

Canada has agreed to take part in the NASA-led effort by contributing a smart robotic system to the NASA’s lunar gateway program.

hrivers@postmedia.com

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

Scientists discover mysterious cosmic threads in Milky Way – The Guardian

Published

 on


Astronomers have discovered hundreds of mysterious cosmic threads that point towards the supermassive black hole at the heart of the Milky Way, after a survey of the galaxy.

The strange filaments, each of which stretches five to 10 light years through space, resemble the dots and dashes of morse code on a vast scale. They spread out from the galactic centre 25,000 light years from Earth like fragmented spokes on an enormous wheel.

Farhad Yusef-Zadeh, an astronomer at Northwestern University in Evanston, Illinois, said he was “stunned” to discover the structures in data taken by the MeerKAT radio telescope in the Northern Cape of South Africa.

300x250x1

The observatory, the most sensitive radio telescope in the world, captured images of the threads during an unprecedented 200-hour survey of the galactic core. Yusef-Zadeh told the Guardian: “They all seem to trace back to the black hole. They are telling us something about the activity of the black hole itself.”

Four decades ago, Yusef-Zadeh found much larger, vertical filaments surrounding Sagittarius A*, the black hole at the centre of the Milky Way, in data gathered by another telescope called the Very Large Array in New Mexico. Those structures dangle perpendicular to the plane of the Milky Way disc and measure 150 light years from top to bottom.

What produced the more numerous vertical filaments is still unclear, but studies have found that they possess strong magnetic fields and emit radio waves as they accelerate particles in cosmic rays to the verge of light speed.

According to Yusef-Zadeh, researchers – himself included – have been so busy grappling with the nature of the giant vertical threads that the existence of the shorter, horizontal filaments which trace back to the centre of the Milky Way almost went unnoticed.

“The emphasis has been on understanding the vertical filaments. The horizontal structures somehow didn’t register,” Yusef-Zadeh said. “It was a surprise to suddenly find a new population of structures that seem to be pointing in the direction of the black hole. I was actually stunned when I saw these.”

“If it wasn’t for MeerKAT these wouldn’t have been detected,” he added. “We’ve never been able to dedicate that amount of time to the centre of the galaxy.

The shorter, horizontal threads that spread out from the centre of the Milky Way came into focus when the scientists removed the background and filtered noise from the MeerKAT images. Yusef-Zadeh believes the structures, described in the Astrophysical Journal Letters, formed through a different process to the larger, vertical filaments.

He suspects that an outburst of material from the black hole about 6m years ago slammed into surrounding stars and gas clouds, creating streaks of hot plasma that point back towards the black hole. The effect is akin to blowing blobs of paint across a canvas with a hairdryer.

“The outflow from the black hole interacts with the objects it meets and distorts their shape,” Yusef-Zadeh said. “It’s sufficient to blow everything in the same direction.”

By studying the cosmic threads, astronomers hope to understand more about the spin of the Milky Way’s central black hole and the accretion disc of infalling material that whirls around it.

“These are not going to be the last images of the centre of the galaxy,” said Yusef-Zadeh. “Our galaxy is rich in lots of structures that we can’t explain. There’s still a lot to be learned.”

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

James Webb Space Telescope finds water in super-hot exoplanet's atmosphere – Space.com

Published

 on


The James Webb Space Telescope has found traces of water vapor in the atmosphere of a super-hot gas giant exoplanet that orbits its star in less than one Earth day. 

The exoplanet in question, WASP-18 b, is a gas giant 10 times more massive than the solar system‘s largest planet, Jupiter. The planet is quite extreme, as it orbits the sun-like star WASP-18, which is located some 400 light-years away from Earth, at an average distance of just 1.9 million miles (3.1 million kilometers). For comparison, the solar system’s innermost planet, Mercury, circles the sun at a distance of 39.4 million miles (63.4 million km). 

Due to such close proximity to the parent star, the temperatures in WASP-18 b’s atmosphere are so high that most water molecules break apart, NASA said in a statement. The fact that Webb managed to resolve signatures of the residual water is a testament to the telescope’s observing powers. 

300x250x1

Related: Exoplanets, dark matter and more: Big discoveries coming from James Webb Space Telescope, astronomers say

“The spectrum of the planet’s atmosphere clearly shows multiple small but precisely measured water features, present despite the extreme temperatures of almost 5,000 degrees Fahrenheit (2,700 degrees Celsius),” NASA wrote in the statement. “It’s so hot that it would tear most water molecules apart, so still seeing its presence speaks to Webb’s extraordinary sensitivity to detect remaining water.”

WASP-18 b, discovered in 2008, has been studied by other telescopes, including the Hubble Space Telescope, NASA’s X-ray space telescope Chandra, the exoplanet hunter TESS and the now-retired infrared Spitzer Space Telescope. None of these space telescopes, however, was sensitive enough to see the signatures of water in the planet’s atmosphere.

“Because the water features in this spectrum are so subtle, they were difficult to identify in previous observations,” Anjali Piette, a postdoctoral fellow at the Carnegie Institution for Science and one of the authors of the new research, said in the statement. “That made it really exciting to finally see water features with these JWST observations.”

In addition to being so massive, hot and close to its parent star, WASP-18 b is also tidally locked. That means one side of the planet constantly faces the star, just like the moon‘s near side always faces Earth. As a result of this tidal locking, considerable differences in temperature exist across the planet’s surface. The Webb measurements, for the first time, enabled scientists to map these differences in detail. 

The signature of water detected in the super hot atmosphere of exoplanet WASP-18 b by the James Webb Space Telescope. (Image credit: NASA/JPL-Caltech (R. Hurt/IPAC))

The measurements found that the most intensely illuminated parts of the planet can be up to 2,000 degrees F (1,100 degrees C) hotter than those in the twilight zone. The scientists didn’t expect such significant temperature differences and now think that there must be some not yet understood mechanism in action that prevents the distribution of heat around the planet’s globe. 

“The brightness map of WASP-18 b shows a lack of east-west winds that is best matched by models with atmospheric drag,” co-author Ryan Challener, of the University of Michigan, said in the statement. “One possible explanation is that this planet has a strong magnetic field, which would be an exciting discovery!” 

RELATED STORIES:

To create the temperature map, the researchers calculated the planet’s infrared glow by measuring the difference in the glow of the parent star during the time the planet transited in front of the star’s disk and then when it disappeared behind it. 

“JWST is giving us the sensitivity to make much more detailed maps of hot giant planets like WASP-18 b than ever before,” Megan Mansfield, a Sagan Fellow at the University of Arizona and one of the authors of the paper describing the results. said in the statement. “This is the first time a planet has been mapped with JWST, and it’s really exciting to see that some of what our models predicted, such as a sharp drop in temperature away from the point on the planet directly facing the star, is actually seen in the data.”

The new study was published online Wednesday (May 31) in the journal Nature.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

JWST Scans an Ultra-Hot Jupiter's Atmosphere – Universe Today

Published

 on


When astronomers discovered WASP-18b in 2009, they uncovered one of the most unusual planets ever found. It’s ten times as massive as Jupiter is, it’s tidally locked to its Sun-like star, and it completes an orbit in less than one Earth day, about 23 hours.

Now astronomers have pointed the JWST and its powerful NIRSS instrument at the ultra-Hot Jupiter and mapped its extraordinary atmosphere.

300x250x1

Ever since its discovery, astronomers have been keenly interested in WASP-18b. For one thing, it’s massive. At ten times more massive than Jupiter, the planet is nearing brown dwarf territory. It’s also extremely hot, with its dayside temperature exceeding 2750 C (4900 F.) Not only that, but it’s likely to spiral to its doom and collide with its star sometime in the next one million years.

For these reasons and more, astronomers are practically obsessed with it. They’ve made extensive efforts to map the exoplanet’s atmosphere and uncover its details with the Hubble and the Spitzer. But those space telescopes, as powerful as they are, were unable to collect data detailed enough to reveal the atmosphere’s properties conclusively.

Now that the JWST is in full swing, it was inevitable that someone’s request to point it at WASP-18b would be granted. Who in the Astronomocracy would say no?

In new research, a team led by a Ph.D. student at the University of Montreal mapped WASP-19b’s atmosphere with the JWST. They used the NIRISS instrument, one of Canada’s contributions to the JWST. The paper is “A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b.” It’s published in Nature, and the lead author is Louis-Philippe Coulombe.

The researchers trained Webb’s NIRISS (Near-Infrared Imager and Slitless Spectrograph) on the planet during a secondary eclipse. This is when the planet passes behind its star and emerges on the other side. The instrument measures the light from the star and the planet, then during the eclipse, they deduct the star’s light, giving a measurement of the planet’s spectrum. The NIRISS’ power gave the researchers a detailed map of the planet’s atmosphere.

This NASA infographic explains how transits and eclipses can reveal information about an exoplanet. Image Credit: NASA/JPL-Caltech (R. Hurt/IPAC)
This NASA infographic explains how transits and eclipses can reveal information about an exoplanet. Image Credit: NASA/JPL-Caltech (R. Hurt/IPAC)

With the help of NIRISS, the researchers mapped the temperature gradients on the planet’s dayside. They found that the planet is much cooler near the terminator line: about 1,000 degrees cooler than the hottest point of the planet directly facing the star. That shows that winds are unable to spread heat efficiently to the planet’s nightside. What’s stopping that from happening?

“JWST is giving us the sensitivity to make much more detailed maps of hot giant planets like WASP-18 b than ever before. This is the first time a planet has been mapped with JWST, and it’s really exciting to see that some of what our models predicted, such as a sharp drop in temperature away from the point on the planet directly facing the star, is actually seen in the data!” said paper co-author Megan Mansfield, a Sagan Fellow at the University of Arizona. 

This figure from the research is a heat map of WASP-18 b's atmosphere. The top panel shows how the point facing the star is much hotter than at other longitudes. At 0o, the temperature is 3121 K, at -90o, it's 1744 K, and at 90o the temperature is 2009 K. (2850 C, 1470 C, and 1735 C.) Image Credit: Coulombe et al. 2023.
This figure from the research is a heat map of WASP-18 b’s atmosphere. The top panel shows how the point facing the star is much hotter than at other longitudes. At 0o, the temperature is 3121 K, at -90o, it’s 1744 K, and at 90o the temperature is 2009 K. (2850 C, 1470 C, and 1735 C.) Image Credit: Coulombe et al. 2023.

The lack of winds moving the atmosphere around and regulating the temperature is surprising, and atmospheric drag has something to do with it.

“The brightness map of WASP-18 b shows a lack of east-west winds that is best matched by models with atmospheric drag,” said co-author Ryan Challener, a post-doctoral researcher at the University of Michigan. “One possible explanation is that this planet has a strong magnetic field, which would be an exciting discovery!”

This figure from the research helps show how atmospheric drag can create a lack of heat-spreading east-west winds. The legend shows 'fit' and then four different atmospheric GCMs (General Circulation Models.) Two of the models, RM-GCM 20 G and SPARC/MITgcm ? = 103 s, have strong atmospheric drag, and they both match the data better than their counterparts, which feature little atmospheric drag. Image Credit: Coulombe et al. 2023.
This figure from the research helps show how atmospheric drag can create a lack of heat-spreading east-west winds. The legend shows ‘fit’ and then four different atmospheric GCMs (General Circulation Models.) Two of the models, RM-GCM 20 G and SPARC/MITgcm ? = 103 s, have strong atmospheric drag, and they both match the data better than their counterparts, which feature little atmospheric drag. Image Credit: Coulombe et al. 2023.

In our Solar System, Jupiter has the strongest magnetic field. Scientists think that swirling conducting materials deep inside the planet, near its bizarre liquid, metallic hydrogen core generates the magnetic fields. The fields are so powerful that they protect the three Galilean moons from the solar wind. They also generate permanent aurorae and create powerful radiation belts around the giant planet.

But WASP-18 b is ten times more massive than Jupiter, and it’s reasonable to think its magnetic fields are even more dominant. If the planet’s magnetic field is responsible for the lack of east-west winds, it could be forcing the winds to move over the North Pole and down the South Pole.

The researchers were also able to measure the atmosphere’s temperature at different depths. Temperatures increased with altitude, sometimes by hundreds of degrees. They also found water vapour at different depths.

At 2,700 Celsius, the heat should tear most water molecules apart. The fact that the JWST was able to spot the remaining water speaks to its sensitivity.

The team obtained the thermal emission spectrum of WASP-18 b by measuring the amount of light it emits over the Webb Telescope's NIRISS SOSS 0.85 - 2.8 micron wavelength range, capturing 65% of the total energy emitted by the planet. WASP-18 b is so hot on the day side of this tidally locked planet that water molecules would be vaporized. Webb directly observed water vapour on the planet in even relatively small amounts, indicating the sensitivity of the observatory.
CREDIT: NASA/JPL-CALTECH/R. HURT
The team obtained the thermal emission spectrum of WASP-18 b by measuring the amount of light it emits over the Webb Telescope’s NIRISS SOSS 0.85 – 2.8 micron wavelength range, capturing 65% of the total energy emitted by the planet. WASP-18 b is so hot on the day side of this tidally locked planet that water molecules would be vaporized. Webb directly observed water vapour on the planet in even relatively small amounts, indicating the sensitivity of the observatory.
CREDIT: NASA/JPL-CALTECH/R. HURT

“Because the water features in this spectrum are so subtle, they were difficult to identify in previous observations. That made it really exciting to finally see water features with these JWST observations,” said Anjali Piette, a postdoctoral fellow at the Carnegie Institution for Science and one of the authors of the new research.

But the JWST was able to reveal more about the star than just its temperature gradients and its water content. The researchers found that the atmosphere contains Vanadium Oxide, Titanium Oxide, and Hydride, a negative ion of hydrogen. Together, those chemicals could combine to give the atmosphere its opacity.

An artist's illustration of WASP-18 b. The illustration hints at north-south winds that could be responsible for the atmosphere's heat profile. Image Credit: NASA/JPL-CALTECH/K. MILLER/IPAC
An artist’s illustration of WASP-18 b. The illustration hints at north-south winds that could be responsible for the atmosphere’s heat profile. Image Credit: NASA/JPL-CALTECH/K. MILLER/IPAC

All these findings came from only six hours of observations with NIRISS. Six hours of JWST time is precious to astronomers, and that’s all the researchers needed. That’s not only because the JWST is so powerful and capable, but also because of WASP-18 b itself.

At only 400 light-years away, it’s relatively close in astronomical terms. Its proximity to its star also helped, and the planet is huddled right next to its star. Plus, WASP-18 b is huge. In fact, it’s one of the most massive planets accessible to atmospheric investigation.

The planet’s atmospheric properties also provide clues to its origins. Comparisons of metallicity and composition between planets and stars can help explain a planet’s history. WASP-18 b couldn’t have formed in its current location. It must have migrated there somehow. And while this work can’t answer that conclusively, it does tell us other things about the giant planet’s formation.

“By analyzing WASP-18 b’s spectrum, we not only learn about the various molecules that can be found in its atmosphere but also about the way it formed. We find from our observations that WASP-18 b’s composition is very similar to that of its star, meaning it most likely formed from the leftover gas that was present just after the star was born,” Coulombe said. “Those results are very valuable to get a clear picture of how strange planets like WASP-18 b, which have no counterpart in our Solar System, come to exist.”

More:

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending