Connect with us


What was life like for mammoths 17,000 years ago? Scientists reveal their secrets | technology – News Collective



Researchers have tracked the astonishing flight of a woolly mammoth in the North Pole, which in its 28 years of life covered enough Alaska to circle the Earth nearly twice.

Look: They Discovered A Flying Dinosaur That Was “The Closest Thing To A Dragon”

In a work published in SciencesScientists – from Austria, China and the United States – They collected unprecedented details of his life by analyzing a fossil 17,000 Years from the University of Alaska Museum in the North. By generating and studying isotopic data for mammoth tusks, they were able to correlate its movements and diet with isotopic maps of the region.

So far, few details are known about the life and movements of the woolly mammoth, and The study provides the first evidence that they traveled long distances.


Look: 180 years ago, dinosaurs were first talked about

“It’s not clear if it was a seasonal migrant, but it covered a lot of land – aUniversity of Alaska Fairbanks researcher Matthew Waller, lead author and co-author of the article, noted in a statement.. He visited many parts of Alaska at some point in his life, Which is surprising when you consider the size of this area.”

Researchers at the Alaska Stable Isotope Facility, which is directed by Waller, sliced ​​the two-meter-long canine lengthwise and created about 400,000 microscopic data points using lasers and other techniques.

Look: What distinguishes cats from other animals? This says science

Matt Waller, director of the Stable Isotope Facility in Alaska, kneels among a group of some mammoth tusks at the University of Alaska Museum in the North. (Photo: JR ANCHETA/University of Alaska Fairbanks/AFP)

Their detailed isotopic analyzes are made possible by the way mammoth tusks grow. Mammoths added new layers daily throughout their lives. When the tusks were segmented lengthwise for sampling, these growth bands looked like stacked ice cream cones, providing a chronological record of a mammoth’s entire life.

From the moment they are born to the day they die, they have a diary written on their fangs — Pat Druckenmiller, paleontologist and director of the North UA Museum, explains.. Mother Nature does not usually provide such comforting records and perpetual life of an individual.

Scientists knew the mammoth died on Alaska’s North Slope, above the Arctic Circle, where its remains were excavated by a team including UA’s Dan Mann and Pam Groves, who are among the study’s co-authors.

The researchers reconstructed the mammoth’s journey to that point by analyzing the isotopic signatures on its canine for the elements strontium and oxygen, which were compared to maps that predicted isotopic variations across Alaska. The researchers created the maps by analyzing the teeth of hundreds of small rodents from across Alaska preserved in the museum’s collections. Animals travel relatively small distances during their lives and They represent the local isotope signals.

Using that set of local data, they mapped isotopic variance across Alaska, providing a baseline for tracking mammoth movements. After taking into account geographical barriers and the average distance traveled each week, the researchers used a new spatial modeling method Keep track of the possible routes the animal has taken during its life.

Close-up of cleft mammoth tusks at a stable isotope facility in Alaska, with blue staining used to detect growth streaks, while sampling along tusks using lasers and other techniques, allowing isotope analysis that provides a record of mammoth life. . (Photo: JR Anchita/University of Alaska Fairbanks/AFP)

Ancient DNA preserved in the mammoth remains allowed the team to identify it as a male related to the last group of its kind that lived on mainland Alaska. These details provided more information about the animal’s life and behaviour, said Beth Shapiro, who led the study’s DNA component.

For example, the abrupt change in his isotopic signature, environment, and movements around the age of 15 probably coincided with The mammoth was expelled from his herd, reflecting a pattern observed in some current male elephants.

“Knowing that it was male gave us a better biological context in which we could interpret isotopic data”, Shapiro, a professor at the University of California, Santa Cruz and an investigator at the Howard Hughes Medical Institute, says.

The isotopes also provided clues to the causes of the animal’s death. Nitrogen isotopes increased during the last winter of their life, a sign that may be a hallmark of starvation in mammals.

“It’s amazing what we’ve been able to see and do with this data,” It highlights co-author Clement Patai, a researcher at the University of Ottawa who led the modeling work in collaboration with Amy Willis of the University of Washington.

Today’s lessons?

Finding more about the life of the extinct species satisfies more than curiosity, says Waller, a professor at UAF’s School of Fisheries and Oceans and the Nordic Institute of Engineering. These details may be surprisingly relevant today, as many species have adapted their movement patterns and ranges to climate change.

“The Arctic is going through many changes, and we can use the past to see how the future will unfold for current and future species –Averma Waller-. Trying to solve this detective story is an example of how our planet and Ecosystems react to environmental change“.

Either because of genetic diversity or scarcity of resources, Patai said, “this species obviously needs a very large space” to live.

But at the time of the transition between the Ice Age and the Interglacial period, when they became extinct, “The area was reduced because more forests grew” and “Humans exerted such strong pressure in southern Alaska that the mammoths probably stopped coming.”

Understanding the factors that led to their extinction can help protect other currently threatened megafauna species, such as caribou and elephants.

With climate change and humans restricting larger species to parks and reserves, “Do we want our children to see elephants in 1,000 years as we see mammoths today?” asks Patai.


as standard

Trust Project

Trust Project

know more

Related video

Miners find fossil remains of an extinct animal 10,000 years ago in Colombia
The regional authority said Thursday that miners searching for gold in Colombia have found the fossil remains of a mastodon that disappeared at least 10,000 years ago.

It may interest you:

Follow us on Twitter:

“Beeraholic. Friend of animals everywhere. Evil web scholar. Zombie maven.”

Adblock test (Why?)


Source link

Continue Reading


Rare ‘big fuzzy green ball’ comet visible in B.C. skies, a 50000-year sight



In the night sky, a comet is flying by Earth for the first time in 50,000 years.

Steve Coleopy, of the South Cariboo Astronomy Club, is offering some tips on how to see it before it disappears.

The green-coloured comet, named C/2022 E3 (ZTF), is not readily visible to the naked eye, although someone with good eyesight in really dark skies might be able to see it, he said. The only problem is it’s getting less visible by the day.

“Right now the comet is the closest to earth and is travelling rapidly away,” Coleopy said, noting it is easily seen through binoculars and small telescopes. “I have not been very successful in taking a picture of it yet, because it’s so faint, but will keep trying, weather permitting.”


At the moment, the comet is located between the bowl of the Big Dipper and the North Star but will be moving toward the Planet Mars – a steady orange-coloured point of light- in the night sky over the next couple of weeks, according to Coleopy.

“I have found it best to view the comet after 3:30 in the morning, after the moon sets,” he said. “It is still visible in binoculars even with the moon still up, but the view is more washed out because of the moonlight.”

He noted the comet looks like a “big fuzzy green ball,” as opposed to the bright pinpoint light of the stars.

“There’s not much of a tail, but if you can look through the binoculars for a short period of time, enough for your eyes to acclimatize to the image, it’s quite spectacular.”

To know its more precise location on a particular evening, an internet search will produce drawings and pictures of the comet with dates of where and when the comet will be in each daily location.

Coleopy notes the comet will only be visible for a few more weeks, and then it won’t return for about 50,000 years.


Source link

Continue Reading


Extreme species deficit of nitrogen-converting microbes in European lakes



Sampling of Lake Constance water from 85 m depth, in which ammonia-oxidizing archaea make up as much as 40% of all microorganisms

Dr. David Kamanda Ngugi, environmental microbiologist at the Leibniz Institute DSMZ


Leibniz Institute DSMZ


An international team of researchers led by microbiologists from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH in Braunschweig, Germany, shows that in the depths of European lakes, the detoxification of ammonium is ensured by an extremely low biodiversity of archaea. The researchers recently published their findings in the prestigious international journal Science Advances. The team led by environmental microbiologists from the Leibniz Institute DSMZ has now shown that the species diversity of these archaea in lakes around the world ranges from 1 to 15 species. This is of particularly concern in the context of global biodiversity loss and the UN Biodiversity Conference held in Montreal, Canada, in December 2022. Lakes play an important role in providing freshwater for drinking, inland fisheries, and recreation. These ecosystem services would be at danger from ammonium enrichment. Ammonium is an essential component of agricultural fertilizers and contributes to its remarkable increase in environmental concentrations and the overall im-balance of the global nitrogen cycle. Nutrient-poor lakes with large water masses (such as Lake Constance and many other pre-alpine lakes) harbor enormously large populations of archaea, a unique class of microorganisms. In sediments and other low-oxygen environments, these archaea convert ammonium to nitrate, which is then converted to inert dinitrogen gas, an essential component of the air. In this way, they contribute to the detoxification of ammonium in the aquatic environment. In fact, the species predominant in European lakes is even clonal and shows low genetic microdiversity between different lakes. This low species diversity contrasts with marine ecosystems where this group of microorganisms predominates with much greater species richness, making the stability of ecosystem function provided by these nitrogen-converting archaea potentially vulnerable to environmental change.

Maintenance of drinking water quality
Although there is a lot of water on our planet, only 2.5% of it is fresh water. Since much of this fresh water is stored in glaciers and polar ice caps, only about 80% of it is even accessible to us humans. About 36% of drinking water in the European Union is obtained from surface waters. It is therefore crucial to understand how environmental processes such as microbial nitrification maintain this ecosystem service. The rate-determining phase of nitrification is the oxidation of ammonia, which prevents the accumulation of ammonium and converts it to nitrate via nitrite. In this way, ammonium is prevented from contaminating water sources and is necessary for its final conversion to the harmless dinitrogen gas. In this study, deep lakes on five different continents were investigated to assess the richness and evolutionary history of ammonia-oxidizing archaea. Organisms from marine habitats have traditionally colonized freshwater ecosystems. However, these archaea have had to make significant changes in their cell composition, possible only a few times during evolution, when they moved from marine habitats to freshwaters with much lower salt concentrations. The researchers identified this selection pressure as the major barrier to greater diversity of ammonia-oxidizing archaea colonizing freshwaters. The researchers were also able to determine when the few freshwater archaea first appeared. Ac-cording to the study, the dominant archaeal species in European lakes emerged only about 13 million years ago, which is quite consistent with the evolutionary history of the European lakes studied.

Slowed evolution of freshwater archaea
The major freshwater species in Europe changed relatively little over the 13 million years and spread almost clonally across Europe and Asia, which puzzled the researchers. Currently, there are not many examples of such an evolutionary break over such long time periods and over large intercontinental ranges. The authors suggest that the main factor slowing the rapid growth rates and associated evolutionary changes is the low temperatures (4 °C) at the bottom of the lakes studied. As a result, these archaea are restricted to a state of low genetic diversity. It is unclear how the extremely species-poor and evolutionarily static freshwater archaea will respond to changes induced by global climate warming and eutrophication of nearby agricultur-al lands, as the effects of climate change are more pronounced in freshwater than in marine habitats, which is associated with a loss of biodiversity.

Publication: Ngugi DK, Salcher MM, Andre A-S, Ghai R., Klotz F, Chiriac M-C, Ionescu D, Büsing P, Grossart H-S, Xing P, Priscu JC, Alymkulov S, Pester M. 2022. Postglacial adaptations enabled coloniza-tion and quasi-clonal dispersal of ammonia oxidizing archaea in modern European large lakes. Science Advances:

Press contact:
PhDr. Sven-David Müller, Head of Public Relations, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH
Phone: ++49 (0)531/2616-300

About the Leibniz Institute DSMZ
The Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures is the world’s most diverse collection of biological resources (bacteria, archaea, protists, yeasts, fungi, bacteriophages, plant viruses, genomic bacterial DNA as well as human and animal cell lines). Microorganisms and cell cultures are collected, investigated and archived at the DSMZ. As an institution of the Leibniz Association, the DSMZ with its extensive scientific services and biological resources has been a global partner for research, science and industry since 1969. The DSMZ was the first registered collection in Europe (Regulation (EU) No. 511/2014) and is certified according to the quality standard ISO 9001:2015. As a patent depository, it offers the only possibility in Germany to deposit biological material in accordance with the requirements of the Budapest Treaty. In addition to scientific services, research is the second pillar of the DSMZ. The institute, located on the Science Campus Braunschweig-Süd, accommodates more than 82,000 cultures and biomaterials and has around 200 employees.

PhDr. Sven David Mueller, M.Sc.
Leibniz-Institut DSMZ
+49 531 2616300
email us here
Visit us on social media:


Source link

Continue Reading


Scientists are closing in on why the universe exists



Particle astrophysicist Benjamin Tam hopes his work will help us understand a question. A very big one.

“The big question that we are trying to answer with this research is how the universe was formed,” said Tam, who is finishing his PhD at Queen’s University.

“What is the origin of the universe?”

And to answer that question, he and dozens of fellow scientists and engineers are conducting a multi-million dollar experiment two kilometres below the surface of the Canadian Shield in a repurposed mine near Sudbury, Ontario.

Ten thousand light-sensitive cameras send data to scientists watching for evidence of a neutrino bumping into another particle. (Tom Howell/CBC)

The Sudbury Neutrino Observatory (SNOLAB) is already famous for an earlier experiment that revealed how neutrinos ‘oscillate’ between different versions of themselves as they travel here from the sun.

This finding proved a vital point: the mass of a neutrino cannot be zero. The experiment’s lead scientist, Arthur McDonald, shared the Nobel Prize in 2015 for this discovery.

The neutrino is commonly known as the ‘ghost particle.’ Trillions upon trillions of them emanate from the sun every second. To humans, they are imperceptible except through highly specialized detection technology that alerts us to their presence.

Neutrinos were first hypothesized in the early 20th century to explain why certain important physics equations consistently produced what looked like the wrong answers. In 1956, they were proven to exist.

A digital image of a sphere that is blue and transparent with lines all over.
The neutrino detector is at the heart of the SNO+ experiment. An acrylic sphere containing ‘scintillator’ liquid is suspended inside a larger water-filled globe studded with 10,000 light-sensitive cameras. (Submitted by SNOLOAB)

Tam and his fellow researchers are now homing in on the biggest remaining mystery about these tiny particles.

Nobody knows what happens when two neutrinos collide. If it can be shown that they sometimes zap each other out of existence, scientists could conclude that a neutrino acts as its own ‘antiparticle’.

Such a conclusion would explain how an imbalance arose between matter and anti-matter, thus clarifying the current existence of all the matter in the universe.

It would also offer some relief to those hoping to describe the physical world using a model that does not imply none of us should be here.

A screengrab of two scientists wearing white hard hat helmets, clear googles and blue safety suits standing on either side of CBC producer holding a microphone. All three people are laughing.
IDEAS producer Tom Howell (centre) joins research scientist Erica Caden (left) and Benjamin Tam on a video call from their underground lab. (Screengrab: Nicola Luksic)

Guests in this episode (in order of appearance):

Benjamin Tam is a PhD student in Particle Astrophysics at Queen’s University.

Eve Vavagiakis is a National Science Foundation Astronomy and Astrophysics Postdoctoral Fellow in the Physics Department at Cornell University. She’s the author of a children’s book, I’m A Neutrino: Tiny Particles in a Big Universe.

Blaire Flynn is the senior education and outreach officer at SNOLAB.

Erica Caden is a research scientist at SNOLAB. Among her duties she is the detector manager for SNO+, responsible for keeping things running day to day.

*This episode was produced by Nicola Luksic and Tom Howell. It is part of an on-going series, IDEAS from the Trenches, some stories are below.


Source link

Continue Reading