adplus-dvertising
Connect with us

Science

Why the James Webb Space Telescope's amazing 'Pillars of Creation' photo has astronomers buzzing – Space.com

Published

 on


The James Webb Space Telescope took a breathtaking look inside the “Pillars of Creation,” a spectacular dust cloud formation made famous by its predecessor, the Hubble Space Telescope. 

The image is not only stunningly beautiful but also reveals cosmic processes never before observed with such clarity. Here is what astronomers see behind the sparkling, colorful tapestry.

If you want to properly take in the magic of the James Webb Space Telescope‘s photo of the Pillars of Creation, you have to download the original image from the website of the Space Telescope Science Institute (STScI) in Baltimore, which manages the mission’s science operations. It’s not a small file. At about 150 megabytes, it might clog your internet downlink for a while. Then zoom into the darkest regions at the tops of the pillars. Zoom in a little more, until you see red dots springing into view. There are dozens of them. The smaller ones are just plain red spots. Others are somewhat larger, resembling flowers with yellow centers surrounded by six red petals, and sometimes with Webb’s trademark snowflake-like refraction patterns.

Related: The James Webb Space Telescope never disproved the Big Bang. Here’s how that falsehood spread.

A star is born …

These floral formations are newborn stars, some of them only a few hundred thousand years old, the creation inside the Pillars of Creation revealed for the first time. For Webb’s predecessor, the Hubble Space Telescope, which observes the universe mostly in visible light (wavelengths that the human eye can see), these pillars were impenetrable, menacing dark formations rising from the Eagle Nebula, a cloudy cluster of stars in the constellation Serpens less than 6,000 light-years away from Earth. But Webb, with its infrared, heat-detecting gaze, peered through the darkness to reveal how light in the universe is being born.

“The most interesting thing about this image is that it’s actually showing us star formation in progress,” Anton Koekemoer, a research astronomer at STScI, told Space.com. 

Koekemoer put the stunning image together from raw data taken by Webb’s powerful NIRCam camera. Amazing imagery of the universe is the daily bread and butter for Koekemoer, who previously worked on processing images from the Hubble Space Telescope. Yet the astronomer admits that the texture, level of detail and amount of scientific information contained in Webb’s photographs stuns even him. 

“I’m amazed at how well Webb can see into the dust and gas that is completely dark with Hubble,” Koekemoer said. “With Hubble, you don’t see any detail at all. But Webb, with its infrared vision, can penetrate directly into these regions and see the stars forming inside those dusty pillars. It’s extremely exciting.”

The Pillars of Creation seen by the James Webb Space Telescope. (Image credit: NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI).)

 … from the cold dark dust 

Professor Derek Ward-Thompson shares Koekemoer’s excitement. A veteran astronomer and head of the School of Natural Sciences at the University of Central Lancashire in the U.K., Ward-Thompson has published several scientific papers about the Pillars of Creation over the years, including a few about the powerful magnetic fields that hold the formation together. Yet, he says, his first thought when seeing the first Webb image of his favorite cloud of cosmic hydrogen was rather unscientific. 

“I just thought ‘Wow’,” Ward-Thompson told Space.com. “It really made me understand how the James Webb Space Telescope is going to be so much better than Hubble, which can only see the outside. It also provides a much better detail, much higher resolution.”

Webb’s images, Ward-Thompson said, are providing a unique window into the dark and freezing clouds where stellar embryos are being incubated from a hydrogen-rich dust. For the first time, astronomers can not only theorize about this process but also study it in dozens of examples of various sizes and brightness levels. 

“I’m sure that Webb’s images will advance our understanding of how stars form and, hence, where our own sun came from,” Ward-Thompson.

The red dots visible in Webb’s images are protostars, cocoons of dust and gas so dense that they are collapsing together under the weight of their own gravity. As the clouds collapse, they form rotating balls, which will eventually become so dense that the hydrogen atoms in their cores will begin to fuse together in the process of nuclear fusion, which makes stars shine. 

The protostars that Webb sees are not fully there yet, only beginning to glow in the infrared light as they warm above the coldness of the surrounding cloud, which is no warmer than minus 390 degrees Fahrenheit (minus 200 degrees Celsius), said Ward-Thompson.

“These young stars that we see in the image are not yet burning hydrogen,” Ward-Thompson said. “But gradually, as more and more material falls in, the middle becomes denser and denser, and then suddenly, it becomes so dense that the hydrogen burning switches on, and then suddenly their temperature jumps up to about 2 million degrees Celsius [35 million degrees F].”

In some of the larger bright red patches in the image, several stars are bursting out at once. Elsewhere, their heat has not yet broken through the surrounding dust.

The Pillars of Creation are one of the closest regions of active star formation to Earth, which means that in combination with Webb’s imaging powers, the site provides the best opportunity to study star-forming processes, Ward-Thompson said. 

The iconic Pillars of Creation. The Hubble Space Telescope’s view on the left, the new James Webb Space Telescope photo on the right. (Image credit: NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI).)

15,000 pixels 

Each of those red dots that you can only see when you zoom into the image covers an area larger than our solar system. The whole image, 15,000 pixels wide, captures an area some 8 to 9 light years-across. 

“You can resolve things that are about the size of our solar system in the image,” Koekemoer said. “If there were individual planets like Jupiter, you wouldn’t be able to resolve those.”

The image, which Koekemoer assembled from data taken by NIRCam in six different filters, shows the Pillars in different colors than they would appear to the human eye. The only wavelength in the image that the human eye would detect is that of the color red, which is represented as blue in the image

“The yellowish, greenish and ultimately orange and red colors go to the mid-infrared wavelengths,” Koekemoer said. “The longest wavelengths in this image are six times longer than the human eye could see.”

With each color, a different component of the physical processes taking place in the stunning nebula appears. The bluish wisps of gas and dust that emanate like thin veils out of the nebula’s edges are clouds of ionized hydrogen — hydrogen electrons stripped from the colder atomic hydrogen forming the dark dense clouds by intense ultraviolet light streaming from nearby massive stars. 

Ionized hydrogen billowing out of the dense clouds of molecular dust that forms the Pillars of Creation. (Image credit: NASA, ESA, CSA, STScI)

The physics behind the pillars

With Webb’s ability to reveal the structure of the dust clouds with unprecedented nuance and texture, astronomers will also be able to study the processes that sculpted the towering clouds over millions of years. 

“The material that the pillars are made of is what we call the interstellar medium, the medium between the stars,” Ward-Thompson said. “It becomes more transparent as you go to longer [infrared] wavelengths. The Hubble images told us only where the material was, but Webb now shows us where it’s thicker and where it’s thinner. It’s almost like making an X-ray of a human.”

Related stories:

Astronomers know that the Pillars are not a stable cosmic sculpture but rather a constantly changing flow of material, similar to the constantly changing surface of a sandy beach. What shapes the pillars are powerful stellar winds emanating from a cluster of large stars, which is not visible in this image, Ward-Thompson said. Strong cosmic magnetic fields hold the clouds together, protecting them from being dispersed by the stellar winds. Still, within several million years, the Pillars will no longer resemble the iconic images that we see today. 

For Webb, the Pillars are still just the beginning, providing only a glimpse of what the $10 billion telescope can accomplish, Koekemoer said.

“Everybody in the astronomical community is very excited about what the future holds for Webb,” Koekemoer said. “I think there’ll be many more observations coming down the road that will show us even more about how stars and galaxies are forming.”

Follow Tereza Pultarova on Twitter @TerezaPultarova. Follow us on Twitter @Spacedotcom and on Facebook

Adblock test (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending