Connect with us

Science

NASA's megarocket is moon-bound: 6 things to know – Mashable

Published

 on


NASA just hauled its massive heavy-lift rocket to a launchpad at Kennedy Space Center for some crucial testing ahead of its first moon mission.

It’s been a long time since the U.S. space agency had a rocket of this magnitude, capable of sending large payloads — astronauts and cargo — into deep space. Not only is the Space Launch System, or SLS, built to travel to the moon, it’s expected to one day put millions of miles on the odometer during the first crewed flight to Mars. Robotic scientific journeys to Saturn and Jupiter also could be in its future.

Here are some key facts about the megarocket as it prepares for its maiden voyage, the Artemis I mission to lunar orbit, which could come as soon as May 2022 (though, in typical NASA fashion, this might happen later this summer).

1. It’s the only rocket that can send the Orion spacecraft to the moon

NASA’s SLS is the only rocket that can send the Orion capsule directly to the moon.
Credit: NASA / Aubrey Gemignani

SLS is the only rocket capable of sending the Orion spacecraft, a capsule that sits atop the stack of boosters, to the moon and beyond. Think of the Orion capsule as the RV of the sky: It’s not only a ride but a habitat for up to four astronauts. In order to travel long journeys into deep space, people will need to be able to eat, sleep, work, and pass time aboard for months.

For Artemis I, an uncrewed Orion will fly thousands of miles past and around the moon. Three weeks after liftoff, the capsule will splash down in the Pacific Ocean. The purpose of the inaugural Artemis mission is to test its ability to safely reenter Earth’s atmosphere and drop into the correct spot for the Navy to recover.

2. It’s not the size, but the thrust, that counts

the SLS rocket's four main engines firing in a thrust test
In a NASA test, the four main rocket engines fired for eight minutes in March 2021 and generated 1.6 million pounds of thrust.
Credit: NASA / Robert Markowitz

Standing 322-feet high, the megarocket is taller than the Statue of Liberty and London’s Big Ben. Compare that to the 184-foot Space Shuttle rocket, which blasted astronauts to the space station in low-Earth orbit.

Despite towering over its predecessor, SLS is actually a bit shorter than Saturn V, the last rocket NASA used to take people into deep space. The Apollo-era rocket was 41 feet taller.

But the new rocket is demonstrably more powerful. SLS will produce 8.8 million pounds of thrust — the oomph an engine provides for the rocket — during liftoff and ascent. That’s 15 percent more than Saturn V offered. Future configurations of the new rocket will pack even more punch.

The four main SLS engines, fueled with 700,000 gallons of cryogenic, or super cold, propellant, will produce a thrust powerful enough to keep eight Boeing 747s aloft.

3. The megarocket is state-of-the-art 1980s technology

NASA building the SLS moon rocket
Engineers and technicians at NASA’s Michoud Assembly Facility in New Orleans attaching the first of four RS-25 engines to the core stage of NASA’s Space Launch System (SLS) rocket.
Credit: NASA / Jude Guidry

SLS is literally and figuratively built upon the Space Shuttle legacy. NASA incorporated major components of the shuttle, which operated between 1981 and 2011, into the new rocket.

Engineers swapped the iconic space plane out for either a cargo or Orion crew spacecraft. The central orange core is an elongated shuttle external fuel tank, powered by four shuttle engines. Rather than reusing those engines, though, NASA will ditch them in the ocean. Twin shuttle solid rocket boosters will assist the core during the first phase of the flight, providing 75 percent of the initial skyward push.

It’s not all old tech, though. NASA upgraded some hardware and used new tooling and manufacturing techniques to get the job done. Some parts have been modernized to meet the needs of deep-space travel, but Congress didn’t allow the space agency to start completely from scratch to design the latest megarocket.

4. Sorry, environment. It’s not reusable.

the Orion spacecraft traveling for three weeks on the Artemis I mission
During Artemis I, the uncrewed Orion spacecraft will launch on the most powerful rocket in the world and travel farther than any spacecraft built for humans has ever flown.
Credit: NASA

Remember that the new moon rocket is built with shuttle parts. NASA designed the shuttle to haul astronauts and supplies back and forth to the space station, which orbits some 250 miles from Earth.

In order to modify the rocket so that it could travel much deeper into space, engineers needed to lighten the load. After all, the moon is roughly 239,000 miles from Earth, around 1,000 times the distance of the space station.

Engineers gutted the Shuttle’s reusable boosters, parachutes, reserve fuel, and landing sensors from the design — the system that allowed the agency to use it again. This gave NASA back about 2,000 pounds of extra weight capacity for lunar trips. Doing so will help Orion reach 24,500 mph, the speed needed to send it on a moon-bound trajectory.

But this means SLS will need new rockets for each mission.

At least the engine exhaust is relatively “clean,” superheated water vapor. The engines are fed liquid hydrogen and liquid oxygen fuel. And NASA upgraded the booster insulation from asbestos to rubber materials, also an environmental improvement.

5. The megarocket has an all-American price tag

NASA's rocket soaring above the American flag
NASA’s Artemis missions will cost about $4.1 billion per launch, according to an inspector general report.
Credit: NASA

Many folks at NASA and in Congress refer to SLS as “the nation’s rocket,” the “flagship rocket,” or “America’s rocket.” It’s considered a national asset, not unlike a bespoke aircraft carrier for the military, intended to serve a national interest: exploring the solar system.

That’s the major reason it’s thought to be the most expensive rocket ever built. While the burgeoning commercial spaceflight sector may soon prove it can build a more cost-efficient space transportation system, affordability was never the priority for SLS.

When Congress passed a NASA spending bill in 2010, it directed the space agency to build the rocket, even specifying what parts to use, which companies to contract, and what kind of business arrangements to leverage. At that time, amid the Great Recession, those lawmakers sought to support thousands of jobs in their districts. Artemis is not just a space program, but a jobs program.

About 3,800 suppliers in all 50 states have contributed to the rocket and Orion projects, said Tom Whitmeyer, NASA’s deputy associate administrator for common exploration systems.


“When you see this rocket, it’s not just a piece of metal that’s going to sit at the pad. It’s a whole bunch of people, rocket scientists throughout this country, throughout our agencies, that have worked on this.”

“It’s a symbol of our country and our communities, our aerospace economy, and what’s in partnership behind it,” he said on a call with reporters in March. “When you see this rocket, it’s not just a piece of metal that’s going to sit at the pad. It’s a whole bunch of people, rocket scientists throughout this country, throughout our agency, that have worked on this.”

At a March congressional committee, Inspector General Paul Martin, who serves as the space agency watchdog for the federal government, estimated each launch would cost $4.1 billion, with half of the tab attributed just to SLS. For perspective, that’s about one-fifth of the entire NASA budget. By 2025, Martin expects NASA will have spent $93 billion on the Artemis program.

6. The rocket is the ultimate Transformer

NASA's rocket transforming for different missions
NASA designed the Space Launch System as the foundation for a generation of human exploration missions to deep space.
Credit: NASA

Engineers designed SLS to evolve into increasingly powerful configurations as its Artemis missions become more complex.

The first assembly, called “Block 1,” will use the central (orange) core booster with four main engines. It can send over 59,500 pounds to orbits beyond the moon. Additionally, a pair of solid rocket boosters and liquid fuel-fed engines will provide much of its thrust. After leaving Earth’s atmosphere, a final rocket booster — the Interim Cryogenic Propulsion Stage — sends the Orion capsule onward to the moon. This is the configuration NASA plans to use for the first three Artemis missions, including a moon landing.

Later missions, which will carry astronauts, will have a different rocket configuration, including the powerful Exploration Upper Stage. Known as “Block 1B,” this rocket design can transport crew and large amounts of cargo — up to 83,700 pounds.

The next iteration of SLS, aka “Block 2,” can provide 9.5 million pounds of thrust and will be the workhorse vehicle for sending cargo to the moon, Mars, and other deep-space destinations, an eight percent increase over Artemis I. This rocket will lift a whopping 101,400 pounds.

In the harsh places NASA astronauts are going, they’ll need bounties of supplies.

Adblock test (Why?)



Source link

Continue Reading

Science

Dusty demise for NASA Mars lander in July; power dwindling – CGTN

Published

 on


A NASA spacecraft on Mars is headed for a dusty demise. 

The InSight lander is losing power because of all the dust on its solar panels. NASA said Tuesday it will keep using the spacecraft’s seismometer to register marsquakes until the power peters out, likely in July. Then flight controllers will monitor InSight until the end of this year, before calling everything off. 

“There really hasn’t been too much doom and gloom on the team. We’re really still focused on operating the spacecraft,” said Jet Propulsion Laboratory’s Bruce Banerdt, the principal scientist. 

Since landing on Mars in 2018, InSight has detected more than 1,300 marsquakes; the biggest one, a magnitude 5, occurred two weeks ago. 

It will be NASA’s second Mars lander lost to dust: A global dust storm took out Opportunity in 2018. In InSight’s case, it’s been a gradual gathering of dust, especially over the past year.

NASA’s two other functioning spacecraft on the Martian surface – rovers Curiosity and Perseverance – are still going strong thanks to nuclear power. The space agency may rethink solar power in the future for Mars, said planetary science director Lori Glaze, or at least experiment with new panel-clearing tech or aim for the less-stormy seasons.

InSight currently is generating one-tenth of the power from the sun that it did upon arrival. Deputy project manager Kathya Zamora Garcia said the lander initially had enough power to run an electric oven for one hour and 40 minutes; now it’s down to 10 minutes max. 

The InSight team had anticipated this much dust buildup, but hoped a gust of wind or dust devil might clean off the solar panels. That has yet to happen, despite several thousand whirlwinds coming close. 

“None of them have quite hit us dead-on yet enough to blow the dust off the panels,” Banerdt told reporters. 

Another science instrument, dubbed the mole, was supposed to burrow 16 feet (5 meters) underground to measure the internal temperature of Mars. But the German digger never got deeper than a couple of feet (a half-meter) because of the unexpected composition of the red dirt, and it finally was declared dead at the beginning of last year.

Adblock test (Why?)



Source link

Continue Reading

Science

Blood moon, big city: Skywatcher captures total lunar eclipse over New York (photos) – Space.com

Published

 on


The eclipsed moon burns red high above the bright lights of New York City in gorgeous photos captured by amateur astronomer Alexander Krivenyshev.

Krivenyshev, the president of WorldTimeZone.com, snapped images of the total lunar eclipse on Sunday night (May 15) from Guttenberg, New Jersey, which is across the Hudson River from the Big Apple. 

He persevered through cloudy conditions, Krivenyshev told Space.com via email, to get shots of the blood-red moon shining like a beacon in a light-polluted sky.

Related: Amazing photos of the Super Flower Blood Moon of 2022

A closeup of the eclipsed moon on May 15, 2022, as photographed by Alexander Krivenyshev. (Image credit: Alexander Krivenyshev, WorldTimeZone.com)

The eclipse began at 9:32 p.m EDT on Sunday (0132 GMT on May 16) when the moon nosed into the light part of Earth’s shadow, known as the penumbra, and ended five hours later. The total eclipse phase, in which the moon was completely darkened by Earth’s heavier umbral shadow, lasted 85 minutes, the longest of any lunar eclipse in 33 years.

Earth’s nearest neighbor temporarily turns a coppery red during total lunar eclipses. This “blood moon” effect is caused by Earth’s atmosphere, which bends some red light onto the lunar surface while scattering away shorter-wavelength light. (No sunlight is hitting the moon directly at this point, of course; Earth is blocking the sun from the moon’s perspective.)

Another series of shots of the total lunar eclipse over New York City, photographed by Alexander Krivenyshev on May 15, 2022.  (Image credit: Alexander Krivenyshev, WorldTimeZone.com)

Related stories:

Last weekend’s sky show was best observed from the Americas and parts of Western Europe and West Africa. It was the first total lunar eclipse of the year, but it won’t be the last; another one will occur on Nov. 8. The Nov. 8 lunar eclipse will be best observed from Australia, eastern Asia and the western United States. 

If you’re hoping to photograph the moon, or want to prepare for the next total lunar eclipse, check out our best cameras for astrophotography and best lenses for astrophotography. Our guides on how to photograph a lunar eclipse, and how to photograph the moon with a camera, also have some helpful tips to plan out your lunar photo session.

Editor’s Note: If you snap an amazing lunar eclipse photo (or your own eclipse webcast) and would like to share it with Space.com’s readers, send your photo(s), comments, and your name and location to spacephotos@space.com.

Mike Wall is the author of “Out There” (Grand Central Publishing, 2018; illustrated by Karl Tate), a book about the search for alien life. Follow him on Twitter @michaeldwall. Follow us on Twitter @Spacedotcom or on Facebook.  

Adblock test (Why?)



Source link

Continue Reading

Science

NASA's Mars InSight mission coming to an end as dust covers solar panels – CBC News

Published

 on


A NASA spacecraft on Mars is headed for a dusty demise.

The Insight lander is losing power because of all the dust on its solar panels. NASA said Tuesday it will keep using the spacecraft’s seismometer to register marsquakes until the power peters out, likely in July. Then flight controllers will monitor InSight until the end of this year, before calling everything off.

“There really hasn’t been too much doom and gloom on the team. We’re really still focused on operating the spacecraft,” said Jet Propulsion Laboratory’s Bruce Banerdt, the principal scientist.

Since landing on Mars in 2018, InSight has detected more than 1,300 marsquakes; the biggest one, a magnitude 5, occurred two weeks ago.

It will be NASA’s second Mars lander lost to dust: A global dust storm took out Opportunity in 2018. In InSight’s case, it’s been a gradual gathering of dust, especially over the past year.

WATCH | NASA scientists discuss InSight’s goals on Mars: [embedded content]

Rethinking solar power

NASA’s two other functioning spacecraft on the Martian surface — rovers Curiosity and Perseverance — are still going strong thanks to nuclear power.

The space agency may rethink solar power in the future for Mars, said planetary science director Lori Glaze, or at least experiment with new panel-clearing tech or aim for the less-stormy seasons.

InSight currently is generating one-tenth of the power from the sun that it did upon arrival.

Deputy project manager Kathya Zamora Garcia said the lander initially had enough power to run an electric oven for one hour and 40 minutes; now it’s down to 10 minutes max.

The InSight team anticipated this much dust buildup, but hoped a gust of wind or a dust devil might clean off the solar panels. That has yet to happen, despite several thousand whirlwinds coming close.

“None of them have quite hit us dead-on yet enough to blow the dust off the panels,” Banerdt told reporters.

Another science instrument, dubbed the mole, was supposed to burrow five metres underground to measure the internal temperature of Mars. But the German digger never got deeper than a half-metre because of the unexpected composition of the red dirt, and it finally was declared dead at the beginning of last year.

Adblock test (Why?)



Source link

Continue Reading

Trending