Connect with us

Science

SDO sees new kind of magnetic explosion on sun – Herald Planet

Published

 on


Forced magnetic reconnection, caused by a prominence from the Sun, was seen for the first time in images from NASA’s Solar Dynamics Observatory, or SDO. This image shows the Sun on May 3, 2012, with the inset showing a close-up of the reconnection event imaged by SDO’s Atmospheric Imaging Assembly instrument, where the signature X-shape is visible. Credit: NASA/SDO/Abhishek Srivastava/IIT(BHU)

NASA’s Solar Dynamics Observatory has observed a magnetic explosion the likes of which have never been seen before. In the scorching upper reaches of the Sun’s atmosphere, a prominence—a large loop of material launched by an eruption on the solar surface—started falling back to the surface of the Sun. But before it could make it, the prominence ran into a snarl of magnetic field lines, sparking a magnetic explosion.

Scientists have previously seen the explosive snap and realignment of tangled magnetic field lines on the Sun—a process known as magnetic reconnection—but never one that had been triggered by a nearby eruption. The observation, which confirms a decade-old theory, may help scientists understand a key mystery about the Sun’s atmosphere, better predict space weather, and may also lead to breakthroughs in the controlled fusion and lab plasma experiments. 

“This was the first observation of an external driver of magnetic reconnection,” said Abhishek Srivastava, solar scientist at Indian Institute of Technology (BHU), in Varanasi, India. “This could be very useful for understanding other systems.  For example, Earth’s and planetary magnetospheres, other magnetized plasma sources, including experiments at laboratory scales where plasma is highly diffusive and very hard to control.”

Previously a type of magnetic reconnection known as spontaneous reconnection has been seen, both on the Sun and around Earth. But this new explosion-driven type—called forced reconnection—had never been seen directly, thought it was first theorized 15 years ago. The new observations have just been published in the Astrophysical Journal.

[embedded content]

Forced magnetic reconnection, caused by a prominence from the Sun, was seen for the first time in images from NASA’s SDO. Credit: NASA’s Goddard Space Flight Center

The previously-observed spontaneous reconnection requires a region with just the right conditions—such as having a thin sheet of ionized gas, or plasma, that only weakly conducts electric current—in order to occur. The new type, forced reconnection, can happen in a wider range of places, such as in plasma that has even lower resistance to conducting an electric current. However, it can only occur if there is some type of eruption to trigger it. The eruption squeezes the plasma and magnetic fields, causing them to reconnect.

While the Sun’s jumble of magnetic field lines are invisible, they nonetheless affect the material around them—a soup of ultra-hot charged particles known as plasma. The scientists were able to study this plasma using observations from NASA’s Solar Dynamics Observatory, or SDO, looking specifically at a wavelength of light showing particles heated 1-2 million kelvins (1.8-3.6 million F).

The observations allowed them to directly see the forced reconnection event for the first time in the solar corona—the Sun’s uppermost atmospheric layer. In a series of images taken over an hour, a prominence in the corona could be seen falling back into the photosphere. En route, the prominence ran into a snarl of magnetic field lines, causing them to reconnect in a distinct X shape. 

Spontaneous reconnection offers one explanation for how hot the solar atmosphere is—mysteriously, the corona is millions of degrees hotter than lower atmospheric layers, a conundrum that has led solar scientists for decades to search for what mechanism is driving that heat. The scientists looked at multiple ultraviolet wavelengths to calculate the temperature of the plasma during and following the reconnection event. The data showed that the prominence, which was fairly cool relative to the blistering corona, gained heat after the event. This suggests forced reconnection might be one way the corona is heated locally. Spontaneous reconnection also can heat plasma, but forced reconnection seems to be a much more effective heater—raising the temperature of the plasma quicker, higher, and in a more controlled manner.

While a prominence was the driver behind this reconnection event, other solar eruptions like flares and coronal mass ejections, could also cause forced reconnection. Since these eruptions drive space weather—the bursts of solar radiation that can damage satellites around Earth—understanding forced reconnection can help modelers better predict when disruptive high-energy charged particles might come speeding at Earth.

Understanding how magnetic reconnection can be forced in a controlled way may also help plasma physicists reproduce reconnection in the lab. This is ultimately useful in the field of laboratory plasma to control and stabilize them.

The scientists are continuing to look for more forced reconnection events. With more observations they can begin to understand the mechanics behind the reconnection and often it might happen.

“Our thought is that forced reconnection is everywhere,” Srivastava said. “But we have to continue to observe it, to quantify it, if we want prove that.”



Citation:
SDO sees new kind of magnetic explosion on sun (2019, December 17)
retrieved 17 December 2019
from https://phys.org/news/2019-12-sdo-kind-magnetic-explosion-sun.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

NASA’s Hubble Space Telescope captured two festive-looking nebulas – Tech Explorist

Published

 on


The image shows NGC 248, about 60 light-years long and 20 light-years wide. They are two nebulas, situated to appear as one. The nebulas, together, are called NGC 248.

Initially discovered in 1834 by the astronomer Sir John Herschel, NGC 248 resides in the Small Magellanic Cloud, located approximately 200,000 light-years away in the southern constellation Tucana.

Small Magellanic Cloud is a dwarf galaxy that is a satellite of our Milky Way galaxy. The image is part of a study called Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE).

The dwarf satellite galaxy contains several brilliant hydrogen nebulas, including NGC 248. Intense radiation from the brilliant central stars is heating hydrogen in each nebula, causing them to glow red.

The study’s principal investigator, Dr. Karin Sandstrom of the University of California, San Diego, said“The Small Magellanic Cloud has between a fifth and a tenth of the amount of heavy elements that the Milky Way does. Because it is so close, astronomers can study its dust in great detail and learn about what dust was like earlier in the history of the universe.”

“It is important for understanding the history of our galaxy, too. Most of the star formation happened earlier in the universe, at a time when there was a much lower percentage of heavy elements than there is now. Dust is a critical part of how a galaxy works, how it forms stars.”

The image is part of a study called Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE). The data used in this image were taken with Hubble’s Advanced Camera for Surveys in September 2015.

Adblock test (Why?)



Source link

Continue Reading

Science

When To See An ‘Earth-Grazer’ This Weekend: Don’t Write-Off The Perseid Meteor Shower, Says Expert – Forbes

Published

 on


If you’ve ever laid down a blanket or set up a lawn chair to watch a meteor shower there’s a good chance it was to watch the Perseids.

Due to peak at 01:00 UT on Saturday, August 13, 2022, normal advice would be to be outside at that time (in Europe) or just as soon as its gets dark on Friday, August 12 (North America).

As I’ve already reported, this year the Perseids coincides with a full Moon, so all but the brightest meteors and “fireballs” (larger, brighter meteors) will be visible. So from the 50-75-or-so “shooting stars” you might normally see during the peak of the Perseids only a few—albeit bright—meteors will be visible.

It’s almost not worth the bother, I said, advising you to go watch this instead next weekend.

However, there is another opinion. In an article published on the American Meteor Society’s website, fireball coordinator Robert Lunsford says that despite the bright full Moon visible meteor rates during the peak of the Perseid meteor shower will be better than 95% of all other nights this year.

When to see the Perseid meteor shower

“Most of the Perseid meteors are faint and bright moonlight will make it difficult to view,” he writes. “Despite the glare of moonlight, the Perseids produce many bright meteors that can still be easily seen despite the bright moonlight.”

He also advises two great times to watch for shooting stars—just after sunset on Friday, August 12 and just before dawn on Saturday, August 13.

Perseids: ‘Earth-grazers’ just after sunset

You’ll need patience, but to see an “Earth-grazer” is unforgettable.

Just after sunset is actually thee worst time in terms of numbers of shooting stars you might see, but the few that do come your way this time of night are special.” The reason is that they just skim the upper regions of the atmosphere and will last much longer than Perseids seen during the morning hours,” writes Lunsford. “Most of these “earth-grazing” Perseids will be seen low in the east or west, traveling north to south.”

Perseids: ‘shooting stars’ before dawn

The activity from the Perseid meteor shower will peak where you are as the radiant—the constellation of Perseus—rises higher into the night sky. “Theoretically, the best time to watch the Perseids is just before the break of dawn when the radiant lies highest in a dark sky,” writes Lunsford. That’s about 04:00 local time, though he also reveals that experienced observers often say the hour between 03:00 and 04:00 is usually the best.

Perseids: ‘shooting stars’ in a moonless sky

If you want to look for Perseids in a dark, moonless sky then you’re mostly out of luck this year. By the time the full Moon is rising long after midnight the meteor rates will have vastly reduced, though it may be worth shooting star-gazing after August 19, 2022.

When is the Perseid meteor shower in 2023?

The Perseid meteor shower will next year peak—in thankfully moonless skies—at around 07:00 UT on August 13, 2023 (so 03:00 EST and midnight PST), which will be ideal for North America.

Wishing you clear skies and wide eyes.

Adblock test (Why?)



Source link

Continue Reading

Science

Meet Qikiqtania, a fossil fish who stayed in the water while others ventured onto land – Big Think

Published

 on


Approximately 365 million years ago, one group of fishes left the water to live on land. These animals were early tetrapods, a lineage that would radiate to include many thousands of species including amphibians, birds, lizards and mammals. Human beings are descendants of those early tetrapods, and we share the legacy of their water-to-land transition.

But what if, instead of venturing onto the shores, they had turned back? What if these animals, just at the cusp of leaving the water, had receded to live again in more open waters?

A new fossil suggests that one fish, in fact, did just that. In contrast to other closely related animals, which were using their fins to prop their bodies up on the bottom of the water and perhaps occasionally venturing out onto land, this newly discovered creature had fins that were built for swimming.

Tom Stewart holds the Qikiqtania fossil. (Stephanie Sang / CC BY-ND)

In March 2020, I was at The University of Chicago and a member of biologist Neil Shubin’s lab. I was working with Justin Lemberg, another researcher in our group, to process a fossil that was collected back in 2004 during an expedition to the Canadian Arctic.

From the surface of the rock it was embedded in, we could see fragments of the jaws, about 2 inches long (5 cm) and with pointed teeth. There were also patches of white scales with bumpy texture. The anatomy gave us subtle hints that the fossil was an early tetrapod. But we wanted to see inside the rock.

Smarter faster: the Big Think newsletter

Subscribe for counterintuitive, surprising, and impactful stories delivered to your inbox every Thursday

Notice: JavaScript is required for this content.

So we used a technology called CT scanning, which shoots X-rays through the specimen, to look for anything that might be hidden within, out of view. On March 13, we scanned an unassuming piece of rock that had a few scales on top and discovered it contained a complete fin buried inside. Our jaws dropped. A few days later, the lab and campus shut down, and COVID-19 sent us into lockdown.

The fin revealed

A fin like this is extremely precious. It can give scientists clues into how early tetrapods were evolving and how they were living hundreds of millions of years ago. For example, based on the shape of certain bones in the skeleton, we can make predictions about whether an animal was swimming or walking.

Although that first scan of the fin was promising, we needed to see the skeleton in high resolution. As soon as we were allowed back on campus, a professor in the university’s department of the geophysical sciences helped us to trim down the block using a rock saw. This made the block more fin, less rock, allowing for a better scan and a closer view of the fin.

[embedded content]

When the dust had cleared and we’d finished analyzing data on the jaws, scales and fin, we realized that this animal was a new species. Not only that, it turns out that this is one of the closest known relatives to limbed vertebrates – those creatures with fingers and toes.

We named it Qikiqtania wakei. Its genus name, pronounced “kick-kiq-tani-ahh,” refers to the Inuktitut words Qikiqtaaluk or Qikiqtani, the traditional name for the region where the fossil was found. When this fish was alive, many hundreds of millions of years ago, this was a warm environment with rivers and streams. Its species name honors the late David Wake, a scientist and mentor who inspired so many of us in the field of evolutionary and developmental biology.

[embedded content]

Skeletons tell how an animal lived

Qikiqtania reveals a lot about a critical period in our lineage’s history. Its scales tell researchers unambiguously that it was living underwater. They show sensory canals that would have allowed the animal to detect the flow of water around its body. Its jaws tell us that it was foraging as a predator, biting and holding onto prey with a series of fangs and drawing food into its mouth by suction.

But it is Qikiqtania’s pectoral fin that is most surprising. It has a humerus bone, just as our upper arm does. But Qikiqtania’s has a very peculiar shape.

Early tetrapods, like Tiktaalik, have humeri that possess a prominent ridge on the underside and a characteristic set of bumps, where muscles attach. These bony bumps tell us that early tetrapods were living on the bottom of lakes and streams, using their fins or arms to prop themselves up, first on the ground underwater and later on land.

Qikiqtania’s humerus is different. It lacks those trademark ridges and processes. Instead, its humerus is thin and boomerang-shaped, and the rest of the fin is large and paddle-like. This fin was built for swimming.

Whereas other early tetrapods were playing at the water’s edge, learning what land had to offer, Qikiqtania was doing something different. Its humerus is truly unlike any others known. My colleagues and I think it shows that Qikiqtania had turned back from the water’s edge and evolved to live, once again, off the ground and in open water.

Evolution isn’t a march in one direction

Evolution isn’t a simple, linear process. Although it might seem like early tetrapods were trending inevitably toward life on land, Qikiqtania shows exactly the limitations of such a directional perspective. Evolution didn’t build a ladder towards humans. It’s a complex set of processes that together grow the tangled tree of life. New species form and they diversify. Branches can head off in any number of directions.

Neil Shubin, who found the fossil, pointing across the valley to the site where Qikiqtania was discovered on Ellesmere Island. (Neil Shubin / CC BY-ND)

This fossil is special for so many reasons. It’s not just miraculous that this fish was preserved in rock for hundreds of millions of years before being discovered by scientists in the Arctic, on Ellesmere Island. It’s not just that it’s remarkably complete, with its full anatomy revealed by serendipity at the cusp of a global pandemic. It also provides, for the first time, a glimpse of the broader diversity and range of lifestyles of fishes at the water-to-land transition. It helps researchers see more than a ladder and understand that fascinating, tangled tree.

Discoveries depend on community

Qikiqtania was found on Inuit land, and it belongs to that community. My colleagues and I were only able to conduct this research because of the generosity and support of individuals in the hamlets of Resolute Bay and Grise Fiord, the Iviq Hunters and Trappers of Grise Fiord, and the Department of Heritage and Culture, Nunavut. To them, on behalf of our entire research team, “nakurmiik.” Thank you. Paleontological expeditions onto their land have truly changed how we understand the history of life on Earth.

COVID-19 kept many paleontologists from traveling and visiting field sites across the world these last few years. We’re eager to return, to visit with old friends and to search again. Who knows what other animals lie hidden, waiting to be discovered inside blocks of unassuming stone.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Adblock test (Why?)



Source link

Continue Reading

Trending