Connect with us

Science

SDO sees new kind of magnetic explosion on sun – Herald Planet

Published

 on


Forced magnetic reconnection, caused by a prominence from the Sun, was seen for the first time in images from NASA’s Solar Dynamics Observatory, or SDO. This image shows the Sun on May 3, 2012, with the inset showing a close-up of the reconnection event imaged by SDO’s Atmospheric Imaging Assembly instrument, where the signature X-shape is visible. Credit: NASA/SDO/Abhishek Srivastava/IIT(BHU)

NASA’s Solar Dynamics Observatory has observed a magnetic explosion the likes of which have never been seen before. In the scorching upper reaches of the Sun’s atmosphere, a prominence—a large loop of material launched by an eruption on the solar surface—started falling back to the surface of the Sun. But before it could make it, the prominence ran into a snarl of magnetic field lines, sparking a magnetic explosion.

Scientists have previously seen the explosive snap and realignment of tangled magnetic field lines on the Sun—a process known as magnetic reconnection—but never one that had been triggered by a nearby eruption. The observation, which confirms a decade-old theory, may help scientists understand a key mystery about the Sun’s atmosphere, better predict space weather, and may also lead to breakthroughs in the controlled fusion and lab plasma experiments. 

“This was the first observation of an external driver of magnetic reconnection,” said Abhishek Srivastava, solar scientist at Indian Institute of Technology (BHU), in Varanasi, India. “This could be very useful for understanding other systems.  For example, Earth’s and planetary magnetospheres, other magnetized plasma sources, including experiments at laboratory scales where plasma is highly diffusive and very hard to control.”

Previously a type of magnetic reconnection known as spontaneous reconnection has been seen, both on the Sun and around Earth. But this new explosion-driven type—called forced reconnection—had never been seen directly, thought it was first theorized 15 years ago. The new observations have just been published in the Astrophysical Journal.

[embedded content]

Forced magnetic reconnection, caused by a prominence from the Sun, was seen for the first time in images from NASA’s SDO. Credit: NASA’s Goddard Space Flight Center

The previously-observed spontaneous reconnection requires a region with just the right conditions—such as having a thin sheet of ionized gas, or plasma, that only weakly conducts electric current—in order to occur. The new type, forced reconnection, can happen in a wider range of places, such as in plasma that has even lower resistance to conducting an electric current. However, it can only occur if there is some type of eruption to trigger it. The eruption squeezes the plasma and magnetic fields, causing them to reconnect.

While the Sun’s jumble of magnetic field lines are invisible, they nonetheless affect the material around them—a soup of ultra-hot charged particles known as plasma. The scientists were able to study this plasma using observations from NASA’s Solar Dynamics Observatory, or SDO, looking specifically at a wavelength of light showing particles heated 1-2 million kelvins (1.8-3.6 million F).

The observations allowed them to directly see the forced reconnection event for the first time in the solar corona—the Sun’s uppermost atmospheric layer. In a series of images taken over an hour, a prominence in the corona could be seen falling back into the photosphere. En route, the prominence ran into a snarl of magnetic field lines, causing them to reconnect in a distinct X shape. 

Spontaneous reconnection offers one explanation for how hot the solar atmosphere is—mysteriously, the corona is millions of degrees hotter than lower atmospheric layers, a conundrum that has led solar scientists for decades to search for what mechanism is driving that heat. The scientists looked at multiple ultraviolet wavelengths to calculate the temperature of the plasma during and following the reconnection event. The data showed that the prominence, which was fairly cool relative to the blistering corona, gained heat after the event. This suggests forced reconnection might be one way the corona is heated locally. Spontaneous reconnection also can heat plasma, but forced reconnection seems to be a much more effective heater—raising the temperature of the plasma quicker, higher, and in a more controlled manner.

While a prominence was the driver behind this reconnection event, other solar eruptions like flares and coronal mass ejections, could also cause forced reconnection. Since these eruptions drive space weather—the bursts of solar radiation that can damage satellites around Earth—understanding forced reconnection can help modelers better predict when disruptive high-energy charged particles might come speeding at Earth.

Understanding how magnetic reconnection can be forced in a controlled way may also help plasma physicists reproduce reconnection in the lab. This is ultimately useful in the field of laboratory plasma to control and stabilize them.

The scientists are continuing to look for more forced reconnection events. With more observations they can begin to understand the mechanics behind the reconnection and often it might happen.

“Our thought is that forced reconnection is everywhere,” Srivastava said. “But we have to continue to observe it, to quantify it, if we want prove that.”



Citation:
SDO sees new kind of magnetic explosion on sun (2019, December 17)
retrieved 17 December 2019
from https://phys.org/news/2019-12-sdo-kind-magnetic-explosion-sun.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

New species of crested dinosaur identified in Mexico

Published

 on

A team of palaeontologists in Mexico have identified a new species of dinosaur after finding its 72 million-year-old fossilized remains almost a decade ago, Mexico’s National Institute of Anthropology and History (INAH) said on Thursday.

The new species, named Tlatolophus galorum, was identified as a crested dinosaur after 80% of its skull was recovered, allowing experts to compare it to other dinosaurs of that type, INAH said.

The investigation, which also included specialists from the National Autonomous University of Mexico, began in 2013 with the discovery of an articulated tail in the north-central Mexican state of Coahuila, where other discoveries have been made.

“Once we recovered the tail, we continued digging below where it was located. The surprise was that we began to find bones such as the femur, the scapula and other elements,” said Alejandro Ramírez, a scientist involved in the discovery.

Later, the scientists were able to collect, clean and analyze other bone fragments from the front part of the dinosaur’s body.

The palaeontologists had in their possession the crest of the dinosaur, which was 1.32 meters long, as well as other parts of the skull: lower and upper jaws, palate and even a part known as the neurocranium, where the brain was housed, INAH said.

The Mexican anthropology body also explained the meaning of the name – Tlatolophus galorum – for the new species of dinosaur.

Tlatolophus is a mixture of two words, putting together a term from the indigenous Mexican language of Nahuatl that means “word” with the Greek term meaning “crest”. Galorum refers to the people linked to the research, INAH said.

 

(Reporting by Abraham Gonzalez; Writing by Drazen Jorgic; Editing by Ana Nicolaci da Costa)

Continue Reading

Science

Alberta family searches for answers in teen's sudden death after COVID exposure, negative tests – CBC.ca

Published

 on


A southern Alberta mother and father are grappling with the sudden, unexplained death of their 17-year-old daughter, and with few answers, they’re left wondering if she could be the province’s youngest victim of COVID-19.

Sarah Strate — a healthy, active Grade 12 student at Magrath High School who loved singing, dancing and being outdoors — died on Monday, less than a week after being notified she’d been exposed to COVID-19.

While two tests came back negative, her parents say other signs point to the coronavirus, and they’re waiting for more answers. 

“It was so fast. It’s all still such a shock,” said Sarah’s mother, Kristine Strate. “She never even coughed. She had a sore throat and her ears were sore for a while, and [she had] swollen neck glands.”

Kristine said Sarah developed mild symptoms shortly after her older sister — who later tested positive for COVID-19 —  visited from Lethbridge, one of Alberta’s current hot spots for the virus.

The family went into isolation at their home in Magrath on Tuesday, April 20. They were swabbed the next day and the results were negative.

‘Everything went south, super-fast’

By Friday night, Sarah had developed fever and chills. On Saturday, she started vomiting and Kristine, a public health nurse, tried to keep her hydrated.

“She woke up feeling a bit more off on Monday morning,” Kristine said. “And everything went south, super-fast.”

Sarah had grown very weak and her parents decided to call 911 when she appeared to become delirious.

“She had her blanket on and I was talking to her and, in an instant, she was unresponsive,” said Kristine, who immediately started performing CPR on her daughter.

When paramedics arrived 20 minutes later, they were able to restore a heartbeat and rushed Sarah to hospital in Lethbridge, where she died.

“I thought there was hope once we got her heart rate back. I really did,” recalled Sarah’s father, Ron.

“He was praying for a miracle, and sometimes miracles don’t come,” said Kristine.

Strate’s parents say her health deteriorated quickly after being exposed to COVID-19. She died at Chinook Regional Hospital in Lethbridge on Monday. (Ron Strate)

Searching for answers

At the hospital, the family was told Sarah’s lungs were severely infected and that she may have ended up with blood clots in both her heart and lungs, a condition that can be a complication of COVID-19.

But a second test at the hospital came back negative for COVID-19.

“There really is no other answer,” Ron said. “When a healthy 17-year-old girl, who was sitting up in her bed and was able to talk, and within 10 minutes is unconscious on our floor — there was no reason [for it].”

The province currently has no record of any Albertans under the age of 20 who have died of COVID-19.

According to the Strate family, the medical examiner is running additional blood and tissue tests, in an effort to uncover the cause of Sarah’s death.

‘Unusual but not impossible’

University of Alberta infectious disease specialist Dr. Lynora Saxinger, who was not involved in Sarah’s treatment, says it is conceivable that further testing could uncover evidence of a COVID-19 infection, despite two negative test results.

However, she hasn’t seen a similar case in Alberta.

“It would be unusual but not impossible because no test is perfect. We have had cases where an initial test is negative and then if you keep on thinking it’s COVID and you re-test, you then can find COVID,” she said.

According to Saxinger, the rate of false negatives is believed to be very low. But it can happen if there are problems with the testing or specimen collection.

She says people are more likely to test positive after symptoms develop. 

“The best sensitivity of the test is around day four or five of having symptoms,” she said. “So you can miss things if you test very, very early. And with new development of symptoms, it’s always a good time to re-test because then the likelihood of getting a positive test is a little higher. But again, no test is perfect.” 

Sarah deteriorated so quickly — dying five days after she first developed symptoms — she didn’t live long enough to make it to her follow-up COVID-19 test. Instead, it was done at the hospital.

‘An amazing kid’

The Strate family now faces an agonizing wait for answers — one that will likely take months — about what caused Sarah’s death.

But Ron, who teaches at the school where Sarah attended Grade 12, wants his daughter to be remembered for the life she lived, not her death.

Strate, pictured here at three years old, had plans to become a massage therapist. She attended Grade 12 at Magrath High School and was an active, healthy teenager who was involved in sports, music and the school’s suicide prevention group. (Ron Strate)

Sarah was one of five children. Ron says she was strong, active and vibrant and had plans to become a massage therapist after graduating from high school.

She played several sports and loved to sing and dance as part of a show choir. She was a leader in the school’s suicide prevention group and would stand up for other students who were facing bullying.

“She’s one of the leaders in our Hope Squad … which goes out and helps kids to not be scared,” he father said.

“She’s an amazing kid.”

Sarah would often spend hours helping struggling classmates, and her parents hope her kindness is not forgotten.

“She’d done so many good things. Honestly, I’ve got so many messages from parents saying, ‘You have no idea how much your daughter helped our kid,'” said Ron.

“This 17-year-old girl probably lived more of a life in 17 years than most adults will live in their whole lives. She was so special. I love her so much.”

Let’s block ads! (Why?)



Source link

Continue Reading

Science

China launches key module of space station planned for 2022

Published

 on

BEIJING (Reuters) -China launched an unmanned module on Thursday containing what will become living quarters for three crew on a permanent space station that it plans to complete by the end of 2022, state media reported.

The module, named “Tianhe”, or “Harmony of the Heavens”, was launched on the Long March 5B, China’s largest carrier rocket, at 11:23 a.m. (0323 GMT) from the Wenchang Space Launch Centre on the southern island of Hainan.

Tianhe is one of three main components of what would be China’s first self-developed space station, rivalling the only other station in service – the International Space Station (ISS).

The ISS is backed by the United States, Russia, Europe, Japan and Canada. China was barred from participating by the United States.

“(Tianhe) is an important pilot project in the building of a powerful nation in both technology and in space,” state media quoted President Xi Jinping as saying in a congratulatory speech.

Tianhe forms the main living quarters for three crew members in the Chinese space station, which will have a life span of at least 10 years.

The Tianhe launch was the first of 11 missions needed to complete the space station, which will orbit Earth at an altitude of 340 to 450 km (211-280 miles).

In the later missions, China will launch the two other core modules, four manned spacecraft and four cargo spacecraft.

Work on the space station programme began a decade ago with the launch of a space lab Tiangong-1 in 2011, and later, Tiangong-2 in 2016.

Both helped China test the programme’s space rendezvous and docking capabilities.

China aims to become a major space power by 2030. It has ramped up its space programme with visits to the moon, the launch of an uncrewed probe to Mars and the construction of its own space station.

In contrast, the fate of the ageing ISS – in orbit for more than two decades – remains uncertain.

The project is set to expire in 2024, barring funding from its partners. Russia said this month that it would quit the project from 2025.

Russia is deepening ties with China in space as tensions with Washington rise.

Moscow has slammed the U.S.-led Artemis moon exploration programme and instead chosen to join Beijing in setting up a lunar research outpost in the coming years.

(Reporting by Ryan Woo and Liangping Gao; Editing by Christian Schmollinger, Simon Cameron-Moore and Lincoln Feast.)

Continue Reading

Trending