Connect with us

Science

The Orionid meteor shower peaks this week. Here’s how to view it in Toronto

Published

 on

The Orionid meteor shower is going to peak this week.

Dr. Jesse Rogerson, astrophysicist and assistant professor at York University, explained to CTV News Toronto the Orionids is one of the “bigger” meteor showers in October.

The Orionids come from a trail of dust particles left behind from Halley’s comet, which circles the sun once every 76 years – “and we plunge through [the dust trail] at the same time every year.”

This particular meteor shower usually peaks in late October, and this year, that’ll be on Saturday, Oct. 21.

Genius Dog 336 x 280 - Animated

At its peak, there will be about 20 meteors per hour or “one every five minutes or so”, according to Rogerson.

In comparison, Rogerson says the biggest meteor showers bring about 60 to 100 meteors per hour, which is about one per minute. The Perseids, which are seen in August, has about 120 meteors per hour.

HOW CAN I SEE THE METEOR SHOWER IN TORONTO?

“So, from the perspective of the (Greater Toronto Area), the best viewing is done when the constellation of Orion is high in the sky, and that doesn’t occur until like two or three in the morning,” Rogerson said.

Since the peak lasts for about twelve hours, stargazers can still see the meteors dash across the night – so long as the sky is clear.

According to Environment Canada, the weather forecast in Toronto for Friday night is calling for clear skies and a low temperature of 11 C.

Those planning on viewing the Orionids will also need to give their eyes some time to adjust to the night sky.

“Your eyes need like 15 or 20 minutes to adjust to the darkness before they can really pick up the dim streaks of light,” Rogerson said.

DO I NEED BINOCULARS OR A TELESCOPE?

“No,” Rogerson said. “I find that that actually hinders the experience.”

Since it is hard to tell where exactly the meteors will shoot from, Rogerson says using a telescope or binoculars will narrow your view and you will likely miss most of them.

“What you want to do is have as big [of] a view of the sky as possible, like sitting back on a chair or on the ground lying back, and just looking up and letting your eyes wait for the thing to move through the sky,” he said.

WHERE CAN I SEE IT?

Since the GTA is “just one big giant light bubble”, Rogerson recommends getting out of the city to view the Orionids.

“The farther you can get out of the light bubble, the better,” he said, adding 20 to 30 minutes out of the city is a good start.

Those who try to stay within the city limits will be at a disadvantage.

“If you’re doing it in the middle of the light bubble, you might only catch like five or six of them because you only really see the bright ones,” Rogerson said.

Stargazers who are up for a road-trip a few hours out of Toronto can make their way to one of the province’s dark-sky preserves either at Torrance Barrens Dark-Sky Preserve, Bruce Peninsula and Point Pelee national parks, or at Fathom Five National Marine Park.

Source link

Continue Reading

Science

Supermassive Black Hole Violently Rips Star Apart, Launches Relativistic Jet Toward Earth – SciTechDaily

Published

 on


Illustration of a tidal disruption event (TDE). Credit: Carl Knox – OzGrav, ARC Centre of Excellence for Gravitational Wave Discovery, Swinburne University of Technology

Rare Sighting of Luminous Jet Spewed by Supermassive Black Hole

Astronomers discover a bright optical flare caused by a dying star’s encounter with a supermassive <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Genius Dog 336 x 280 - Animated
black hole
A black hole is a place in space where the gravitational field is so strong that not even light can escape it. Astronomers classify black holes into three categories by size: miniature, stellar, and supermassive black holes. Miniature black holes could have a mass smaller than our Sun and supermassive black holes could have a mass equivalent to billions of our Sun.

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>black hole.

What happens when a dying star flies too close to a supermassive black hole?

Several things happen, according to University of Maryland (UMD) astronomer Igor Andreoni: first, the star is violently ripped apart by the black hole’s gravitational tidal forces—similar to how the Moon pulls tides on Earth but with greater strength. Next, pieces of the star are captured into a swiftly spinning disk orbiting the black hole. Finally, the black hole consumes what remains of the doomed star in the disk. This is what astronomers call a tidal disruption event (TDE).

However, in some extremely rare cases, the supermassive black hole launches “relativistic jets” after destroying a star. These are beams of matter traveling close to the speed of light. Andreoni discovered one such case with his team in the Zwicky Transient Facility (ZTF) survey in February 2022. After the group publicly announced the sighting, the event was named “AT 2022cmc.” The team published its findings on November 30, 2022, in the journal Nature.

“The last time scientists discovered one of these jets was well over a decade ago,” said Michael Coughlin, an assistant professor of astronomy at the University of Minnesota Twin Cities and co-lead on the project. “From the data we have, we can estimate that relativistic jets are launched in only 1% of these destructive events, making AT 2022cmc an extremely rare occurrence. In fact, the luminous flash from the event is among the brightest ever observed.”

TDE Emissions Illustration

TDE emissions. Credit: Zwicky Transient Facility/R.Hurt (Caltech/IPAC)

Before AT 2022cmc, the only two previously known jetted TDEs were discovered through gamma-ray space missions, which detect the highest-energy forms of radiation produced by these jets. As the last such discovery was made in 2012, new methods were required to find more events of this nature. To help address that need, Andreoni, who is a postdoctoral associate in the Department of Astronomy at UMD and <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

NASA
Established in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is &quot;To discover and expand knowledge for the benefit of humanity.&quot; Its core values are &quot;safety, integrity, teamwork, excellence, and inclusion.&quot;

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>NASA Goddard Space Flight Center, and his team implemented a novel, “big picture” tactic to find AT 2022cmc. They used ground-based optical surveys, or general maps of the sky without specific observational targets. Using ZTF, a wide-field sky survey taken by the Samuel Oschin Telescope in California, the team was able to identify and uniquely study the otherwise dormant-looking black hole.

“We developed an open-source data pipeline to store and mine important information from the ZTF survey and alert us about atypical events in real-time,” Andreoni explained. “The rapid analysis of ZTF data, the equivalent to a million pages of information every night, allowed us to quickly identify the TDE with relativistic jets and make follow-up observations that revealed an exceptionally high luminosity across the electromagnetic spectrum, from the X-rays to the millimeter and radio.”

Zwicky Transient Facility

The Zwicky Transient Facility scans the sky using a state-of-the-art wide-field camera mounted on the Samuel Oschin telescope at the Palomar Observatory in Southern California. Credit: Palomar Observatory/Caltech

Follow-up observations with many observatories confirmed that AT 2022cmc was fading rapidly and the ESO Very Large Telescope revealed that AT 2022cmc was at cosmological distance, 8.5 billion light years away.

<span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Hubble Space Telescope
The Hubble Space Telescope (often referred to as Hubble or HST) is one of NASA's Great Observatories and was launched into low Earth orbit in 1990. It is one of the largest and most versatile space telescopes in use and features a 2.4-meter mirror and four main instruments that observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. It was named after astronomer Edwin Hubble.

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>Hubble Space Telescope optical/infrared images and radio observations from the Very Large Array pinpointed the location of AT 2022cmc with extreme precision. The researchers believe that AT 2022cmc was at the center of a galaxy that is not yet visible because the light from AT 2022cmc outshone it, but future space observations with Hubble or James Webb Space Telescopes may unveil the galaxy when the transient eventually disappears.

It is still a mystery why some TDEs launch jets while others do not seem to. From their observations, Andreoni and his team concluded that the black holes in AT 2022cmc and other similarly jetted TDEs are likely spinning rapidly so as to power the extremely luminous jets. This suggests that a rapid black hole spin may be one necessary ingredient for jet launching—an idea that brings researchers closer to understanding the physics of supermassive black holes at the center of galaxies billions of light years away.

“Astronomy is changing rapidly,” Andreoni said. “More optical and infrared all-sky surveys are now active or will soon come online. Scientists can use AT 2022cmc as a model for what to look for and find more disruptive events from distant black holes. This means that more than ever, big data mining is an important tool to advance our knowledge of the universe.”

See Astronomical Signal Is Black Hole Jet Pointing Straight Toward Earth for related research on AT 2022cmc.

Reference: “A very luminous jet from the disruption of a star by a massive black hole” by Igor Andreoni, Michael W. Coughlin, Daniel A. Perley, Yuhan Yao, Wenbin Lu, S. Bradley Cenko, Harsh Kumar, Shreya Anand, Anna Y. Q. Ho, Mansi M. Kasliwal, Antonio de Ugarte Postigo, Ana Sagués-Carracedo, Steve Schulze, D. Alexander Kann, S. R. Kulkarni, Jesper Sollerman, Nial Tanvir, Armin Rest, Luca Izzo, Jean J. Somalwar, David L. Kaplan, Tomás Ahumada, G. C. Anupama, Katie Auchettl, Sudhanshu Barway, Eric C. Bellm, Varun Bhalerao, Joshua S. Bloom, Michael Bremer, Mattia Bulla, Eric Burns, Sergio Campana, Poonam Chandra, Panos Charalampopoulos, Jeff Cooke, Valerio D’Elia, Kaustav Kashyap Das, Dougal Dobie, José Feliciano Agüí Fernández, James Freeburn, Cristoffer Fremling, Suvi Gezari, Simon Goode, Matthew J. Graham, Erica Hammerstein, Viraj R. Karambelkar, Charles D. Kilpatrick, Erik C. Kool, Melanie Krips, Russ R. Laher, Giorgos Leloudas, Andrew Levan, Michael J. Lundquist, Ashish A. Mahabal, Michael S. Medford, M. Coleman Miller, Anais Möller, Kunal P. Mooley, A. J. Nayana, Guy Nir, Peter T. H. Pang, Emmy Paraskeva, Richard A. Perley, Glen Petitpas, Miika Pursiainen, Vikram Ravi, Ryan Ridden-Harper, Reed Riddle, Mickael Rigault, Antonio C. Rodriguez, Ben Rusholme, Yashvi Sharma, I. A. Smith, Robert D. Stein, Christina Thöne, Aaron Tohuvavohu, Frank Valdes, Jan van Roestel, Susanna D. Vergani, Qinan Wang and Jielai Zhang, 30 November 2022, Nature.
DOI: 10.1038/s41586-022-05465-8

Other UMD collaborators include: adjunct associate professor of astronomy Brad Cenko; astronomy professor M. Coleman Miller; graduate student Erica Hammerstein and Tomas Ahumada (M.S. ’20, astronomy).

The research was supported by the National Science Foundation (Grant Nos. PHY-2010970 425, OAC-2117997, 1106171 and AST-1440341), Wenner-Gren Foundation, Swedish Research Council (Reg. No. 427 2020-03330), European Research Council (Grant No. 759194 432 – USNAC), VILLUM FONDEN (Grant No. 19054), the Netherlands Organization for Scientific Research, Spanish National Research Project (RTI2018-098104-J-I00), NASA (Award No. No. 80GSFC17M0002), the Knut and Alice Wallenberg Foundation (Dnr KAW 2018.0067), Heising-Simons Foundation (Grant No. 12540303), European Union Seventh Framework Programme (Grant No. 312430) Caltech, IPAC, the Weizmann Institute for Science, the Oskar Klein Center at Stockholm University, the <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

University of Washington
Founded in 1861, the University of Washington (UW, simply Washington, or informally U-Dub) is a public research university in Seattle, Washington, with additional campuses in Tacoma and Bothell. Classified as an R1 Doctoral Research University classification under the Carnegie Classification of Institutions of Higher Education, UW is a member of the Association of American Universities.

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>University of Washington, Deutsches Elektronen-Synchrotron and Humboldt University, Los Alamos National Laboratories, the TANGO Consortium of Taiwan, the University of Wisconsin at Milwaukee and Lawrence Berkeley National Laboratories.

Adblock test (Why?)



Source link

Continue Reading

Science

Physicists Create ‘the Smallest, Crummiest Wormhole You Can Imagine’ – The New York Times

Published

 on


In an experiment that ticks most of the mystery boxes in modern physics, a group of researchers announced on Wednesday that they had simulated a pair of black holes in a quantum computer and sent a message between them through a shortcut in space-time called a wormhole.

Physicists described the achievement as another small step in the effort to understand the relation between gravity, which shapes the universe, and quantum mechanics, which governs the subatomic realm of particles.

“This is important because what we have here in its construct and structure is a baby wormhole,” said Maria Spiropulu, a physicist at the California Institute of Technology and the leader of a consortium called Quantum Communication Channels for Fundamental Physics, which conducted the research. “And we hope that we can make adult wormholes and toddler wormholes step-by-step.”

Genius Dog 336 x 280 - Animated

In their report, published Wednesday in Nature, the researchers described the result in measured words: “This work is a successful attempt at observing traversable wormhole dynamics in an experimental setting.”

The wormhole that Dr. Spiropulu and her colleagues created and exploited is not a tunnel through real physical space but rather through an “emergent” two-dimensional space. The “black holes” were not real ones that could swallow the computer but lines of code in a quantum computer. Strictly speaking, the results apply only to a simplified “toy model” of a universe — in particular, one that is akin to a hologram, with quantum fields on the edge of space-time determining what happens within, sort of in the way that the label on a soup can describes the contents.

To be clear: The results of this experiment do not offer the prospect anytime soon, if ever, of a cosmic subway through which to roam the galaxy like Jodie Foster in the movie “Contact” or Matthew McConaughey in “Interstellar.”

“I guess the key question, which is perhaps hard to answer, is: Do we say from the simulation it’s a real black hole?” Daniel Jafferis, a physics professor at Harvard, said. “I kind of like the term ‘emergent black hole.’”

He added: “We are just using the quantum computer to find out what it would look and feel like if you were in this gravitational situation.” He and Alexander Zlokapa, a doctoral student at the Massachusetts Institute of Technology, are the lead authors of the paper.

Physicists reacted to the paper with interest and caution, expressing concern that the public and media would mistakenly think that actual physical wormholes had been created.

“The most important thing I’d want New York Times readers to understand is this,” Scott Aaronson, a quantum computing expert at the University of Texas in Austin, wrote in an email. “If this experiment has brought a wormhole into actual physical existence, then a strong case could be made that you, too, bring a wormhole into actual physical existence every time you sketch one with pen and paper.”

Daniel Harlow, a physicist at M.I.T. who was not involved in the experiment, noted that the experiment was based on a model of quantum gravity that was so simple, and unrealistic, that it could just as well have been studied using a pencil and paper.

“So I’d say that this doesn’t teach us anything about quantum gravity that we didn’t already know,” Dr. Harlow wrote in an email. “On the other hand, I think it is exciting as a technical achievement, because if we can’t even do this (and until now we couldn’t), then simulating more interesting quantum gravity theories would CERTAINLY be off the table.” Developing computers big enough to do so might take 10 or 15 years, he added.

Leonard Susskind, a physicist at Stanford University who was not part of the team, agreed. “They’re learning that they could do this experiment,” he said, adding: “The really interesting thing here is the possibility of analyzing purely quantum phenomena using general relativity, and who knows where that’s going to go.”

Albert Einstein at the Carnegie Institute of Technology, now known as Carnegie Mellon University, in Pittsburgh in 1934.Pictorial Press Ltd., via Alamy

Wormholes entered the physics lexicon in 1935 as one of the weirder predictions of Albert Einstein’s general theory of relativity, which describes how matter and energy warp space to create what we call gravity. That year Einstein and his colleague, Nathan Rosen, showed in a paper that shortcuts through space-time, connecting pairs of black holes, could exist. The physicist John Wheeler later called these connectors “wormholes.”

Originally it seemed that wormholes were effectively useless; theory held that they would slam shut the instant anything entered them. They have never been observed outside of science fiction.

A month earlier that same year, in 1935, Einstein, Rosen and Boris Podolsky made another breakthrough, one they thought would discredit the chancy nature of quantum mechanics. They pointed out that quantum rules permitted what Einstein called “spooky action at a distance.” Measuring one of a pair of particles would determine the results of measuring the other particle, even if the two were light-years apart. Einstein thought this prediction was absurd, but physicists now call it “entanglement” and use it every day in the lab.

Until a few years ago, such quantum tricks weren’t thought to have anything to do with gravity. As a result, physicists were left with no theory of “quantum gravity” to explain what happened when the realms of inner space and outer space collided, as in the Big Bang or inside black holes.

But in 2013 Juan Maldacena, a theoretical physicist at the Institute for Advanced Study in Princeton, and Dr. Susskind proposed that these two phenomena — spooky action and wormholes — were actually two sides of the same coin, each described in a different but complementary mathematical language.

Those spooky, entangled particles, by this logic, were connected by equally mysterious wormholes. Quantum mechanics could be enlisted to study gravity, and vice versa. The equations that describe quantum phenomena turned out to have analogues in the Einsteinian equations for gravity.

“It’s mostly a matter of taste which description you use because they give exactly the same answer,” Dr. Jafferis said. “And that was an incredible discovery.”

In a quantum computer, physicists use a circuit of operations called gates to open a shortcut in an imaginary space between qubits representing two black holes and send messages between them.Andrew Mueller/INQNET

The recent wormhole experiment sought to employ the mathematics of general relativity to examine an aspect of quantum magic, known as quantum teleportation, to see if some new aspect of physics or gravity might be revealed.

In quantum teleportation, physicists use a set of quantum manipulations to send information between two particles — inches or miles apart — that are entangled in a pair, without the physicists knowing what the message is. The technology is expected to be the heart of a next-generation, unhackable “quantum internet.”

Physicists like to compare the teleportation process to two cups of tea. Drop a cube of sugar into one teacup, and it promptly dissolves — then, after a tick of the quantum clock, the cube reappears intact in the other teacup.

The experiment became conceivable after a pair of papers by Dr. Susskind and, independently, by Dr. Jafferis, Ping Gao of M.I.T., and Aron Wall, a theoretical physicist at the University of Cambridge. They suggested a way that wormholes could be made traversable, after all. What was needed, Dr. Gao and his collaborators said, was a small dose of negative energy at the exit end of the wormhole to prop open the hatch long enough for information to escape.

In classical physics, there is no such thing as negative energy. But in quantum theory, energy can be negative, generating an antigravitational effect. For example, so-called virtual particles, which flit in and out of existence using energy borrowed from empty space, can fall into a black hole, carrying a debt to nature in the form of energy that the black hole must then pay back. This slow leak, Stephen Hawking calculated in 1974, causes the black hole to lose energy and shrink.

When Dr. Spiropulu proposed trying to recreate this wormhole magic on a quantum computer, her colleagues and sponsors at the Department of Energy “thought I was completely nuts,” she recalled. “But Jafferis said, Let’s do it.”

One clue that the researchers were actually recording “wormholelike” behavior was that signals emerged from the other end of the wormhole in the order that they went in.Andrew Mueller/INQNET

In ordinary computers, including the phone in your pocket, the currency of calculation is bits, which can be ones or zeros. Quantum computers run on qubits, which can be 0 or 1 or anywhere in between until they are measured or observed. This makes quantum computers super powerful for certain kinds of tasks, like factoring large numbers and (maybe one day) cracking cryptographic codes. In essence, a quantum computer runs all the possible variations of the program simultaneously to arrive at a solution.

“We make uncertainty an ally and embrace it,” Dr. Spiropulu said.

To reach their full potential, quantum computers will need thousands of working qubits and a million more “error correction” qubits. Google hopes to reach such a goal by the end of the decade, according to Hartmut Neven, head of the company’s Quantum Artificial Intelligence lab in Venice, Calif., who is also on Dr. Spiropulu’s team.

The Caltech physicist and Nobel laureate Richard Feynman once predicted that the ultimate use of this quantum power might be to investigate quantum physics itself, as in the wormhole experiment.

“I’m excited to see that researchers can live out Feynman’s dream,” Dr. Neven said.

The wormhole experiment was carried out on a version of Google’s Sycamore 2 computer, which has 72 qubits. Of these, the team used only nine to limit the amount of interference and noise in the system. Two were reference qubits, which played the roles of input and output in the experiment.

The seven other qubits held the two copies of code describing a “sparsified” version of an already simple model of a holographic universe called SYK, named after its three creators: Subir Sachdev of Harvard, Jinwu Ye of Mississippi State University and Alexei Kitaev of Caltech. Both SYK models were packed into the same seven qubits. In the experiment these SYK systems played the role of two black holes, one by scrambling the message into nonsense — the quantum equivalent of swallowing it — and then the other by popping it back out.

“Into this we throw a qubit,” Dr. Lykken said, referring to the input message — the quantum analog of a series of ones and zeros. This qubit interacted with the first copy of the SYK qubit; its meaning was scrambled into random noise and it disappeared.

Then, in a tick of the quantum clock, the two SYK systems were connected and a shock of negative energy went from the first system to the second one, briefly propping open the latter.

The signal then reappeared in its original unscrambled form — in the ninth and last qubit, attached to the second SYK system, which represented the other end of the wormhole.

One clue that the researchers were actually recording “wormholelike” behavior, Dr. Lykken said, was that signals emerged from the other end of the wormhole in the order that they went in.

In a Nature article accompanying Dr. Jafferis’s paper, Dr. Susskind and Adam Brown, a physicist at Stanford, noted that the results might shed light on some still-mysterious aspects of ordinary quantum mechanics. For instance, after the sugar cube dissolves in the first teacup, why does it reappear in the other cup in its original form?

“The surprise is not that the message made it across in some form, but that it made it across unscrambled,” the two authors wrote.

The easiest explanation, they added, is that the message went through a wormhole, albeit a “really short” one, Dr. Lykken said in an interview. In quantum mechanics, the shortest conceivable length in nature is 10³³ centimeters, the so-called Planck length. Dr. Lykken calculated that their wormhole was maybe only three Planck lengths long.

“It’s the smallest, crummiest wormhole you can imagine making,” he said. “But that’s really cool because now we’re clearly doing quantum gravity.”

Adblock test (Why?)



Source link

Continue Reading

Science

Distant black hole is caught in the act of annihilating a star – Edmonton Journal

Published

 on


Article content

WASHINGTON — Astronomers have detected an act of extreme violence more than halfway across the known universe as a black hole shreds a star that wandered too close to this celestial savage. But this was no ordinary instance of a ravenous black hole.

Article content

It was one of only four examples – and the first since 2011 – of a black hole observed in the act of tearing apart a passing star in what is called a tidal disruption event and then launching luminous jets of high-energy particles in opposite directions into space, researchers said. And it was both the furthest and brightest such event on record.

Genius Dog 336 x 280 - Animated

Article content

Astronomers described the event in studies published on Wednesday in the journals Nature and Nature Astronomy.

The culprit appears to be a supermassive black hole believed to be hundreds of millions of times the mass of our sun located roughly 8.5 billion light years away from Earth. A light year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km).

“We think that the star was similar to our sun, perhaps more massive but of a common kind,” said astronomer Igor Andreoni of the University of Maryland and NASA’s Goddard Space Flight Center, lead author of one of the studies.

Article content

The event was detected in February through the Zwicky Transient Facility astronomical survey using a camera attached to a telescope at the Palomar Observatory in California. The distance was calculated using the European Southern Observatory’s Very Large Telescope in Chile.

“When a star dangerously approaches a black hole – no worries, this will not happen to the sun – it is violently ripped apart by the black hole’s gravitational tidal forces -similar to how the moon pulls tides on Earth but with greater strength,” said University of Minnesota astronomer and study co-author Michael Coughlin. (See animation of tidal disruption event)

“Then, pieces of the star are captured into a swiftly spinning disk orbiting the black hole. Finally, the black hole consumes what remains of the doomed star in the disk. In some very rare cases, which we estimated to be 100 times rarer, powerful jets of material are launched in opposite directions when the tidal disruption event occurs,” Coughlin added.

Article content

Andreoni and Coughlin said the black hole was likely spinning rapidly, which might help explain how the two powerful jets were launched into space at almost the speed of light.

Massachusetts Institute of Technology astronomer Dheeraj Pasham, lead author of the other study, said the researchers were able to observe the event very early on – within a week of the black hole starting to consume the doomed star.

While researchers detect tidal disruption events about twice per month, ones that produce jets are extremely rare. One of the jets emanating from this black hole seems to be pointing toward Earth, making it appear brighter than if it were heading in another direction – an effect called “Doppler boosting” that is similar to the enhanced sound of a passing police siren.

The supermassive black hole is believed to reside at the center of a galaxy – much as the Milky Way and most galaxies have one of these at their core. But the tidal disruption event was so bright that it obscured the light of the galaxy’s stars.

“At its peak, the source appeared brighter than 1,000 trillion suns,” Pasham said.

(Reporting by Will Dunham, Editing by Rosalba O’Brien)

Adblock test (Why?)



Source link

Continue Reading

Trending