Connect with us

Science

We're likely to find alien life in the next decade, scientists say. Here's where NASA plans to look — in our solar system and beyond. – Business Insider

Published

 on


Many NASA scientists think we’re on the verge of finding alien life.

That’s because the agency plans to dramatically ramp up its search for signs of extraterrestrial life in the next 10 years – in ancient Martian rock, hidden oceans on moons of Jupiter and Saturn, and the atmospheres of faraway planets orbiting other stars.

„With all of this activity related to the search for life, in so many different areas, we are on the verge of one of the most profound discoveries ever,“ Thomas Zurbuchen, NASA’s former administrator, told Congress in 2017.

Ellen Stofan, NASA’s former chief scientist, said in 2015 that she believes we’ll get „strong indications of life beyond Earth in the next decade and definitive evidence in the next 10 to 20 years.“

„We know where to look, we know how to look, and in most cases we have the technology,“ she added, according to the LA Times.

Here’s how NASA plans to track down alien life – in our solar system and beyond.


We’re closer to finding alien life than we’ve ever been.

Foto: Astronaut Scott Kelly took this photo of Japan from the International Space Station and posted it to Twitter on July 25, 2015.sourceNASA/Scott Kelly

„I can’t believe we are the only living entity in the universe,“ astrophysicist and Nobel Prize winner Dider Queloz said during a talk in October. „There are just way too many planets, way too many stars, and the chemistry is universal. The chemistry that led to life has to happen elsewhere.“

Many astrophysicists and astronomers are convinced that it’s not a matter of if we’ll find life – it’s when.


Mars is the closest place where NASA could find signs of alien life.

Foto: A mosaic image of Mars produced with about 100 images from the Viking orbiter.sourceNASA

It’s unlikely that any life is currently thriving on Mars. But scientists think the planet may have hosted life long ago, when it had an atmosphere as thick as Earth’s, which would have kept the Martian surface warm enough to hold liquid water.


In September, NASA chief scientist Jim Green said two rovers set to launch to Mars next year are likely to help scientists find clues about life on the red planet.

Foto: Jim Green gives opening remarks at a NASA media briefing about a Mars-bound spacecraft, September 17, 2014.sourceNASA/Bill Ingalls

He was referring to the Mars 2020 rover, which will look for alien fossils on the red planet, and a similar rover that the European Space Agency is planning to launch in the spring.

„I think we’re close to finding it, and making some announcements,“ he told The Telegraph. Green later clarified that he didn’t mean NASA had already found life.

„What we have are missions that we’re going to launch that will look for life,“ he told Gizmodo.


The Mars 2020 rover will search for signs of ancient microbial life and test out technology that could pave the way for humans to walk the Martian surface.

Foto: Members of NASA’s Mars 2020 project take a selfie after attaching the remote sensing mast to the rover, June 5, 2019.sourceNASA/JPL-Caltech

The robot is slated to launch in July 2020. If all goes according to plan, both rovers will reach Mars in 2021.


It will drill into Martian rock, collect samples, and stash them for future transport back to Earth.

Foto: An artist concept of the proposed NASA Mars Sample Return mission shows the launch of a Martian sample back toward Earth.sourceNASA/JPL-Caltech

„I’m excited about these missions because they have the opportunity to find life, they really do, and I want them to,“ Green told The Telegraph. „We’ve never drilled that deep down. When environments get extreme, life moves into the rocks.“


Beyond Mars, the best place to look for life in our solar system is the hidden ocean on an icy moon of Jupiter called Europa.

Foto: Half of Jupiter’s icy moon Europa as seen via images taken by NASA’s Galileo spacecraft in the late 1990s.sourceNASA/JPL-Caltech/SETI Institute

When Galileo Galilei first looked at Jupiter through his homemade telescope in 1610, he spotted four moons circling the planet. Nearly 400 years later, NASA’s Galileo mission found evidence that one of those moons, Europa, conceals a vast ocean of liquid water beneath its icy crust.


Life could arise around deep-sea volcanic vents in this subsurface ocean.

Foto: An illustration of a submersible robot exploring the subsurface ocean of an icy moon.sourceUploaded by ANGELUS on Wikipedia

On Earth, such vents produce intense heat that rips apart molecules and sparks chemical reactions. Microbes convert the resulting hydrogen into sugar. Rather than photosynthesis (which is fueled by light), this process of „chemosynthesis“ uses chemical reactions, so ecosystems can emerge without sunlight.


NASA is planning to take a closer look at that ocean with the Europa Clipper mission, which could launch as early as 2023.

Foto: An artist’s rendering of NASA’s Europa Clipper spacecraft.sourceNASA/JPL-Caltech

The spacecraft will fly by Europa 45 times, getting as close at 16 miles above the moon’s surface.

„We have gone in nuclear cesspools, places where you’d think nothing could survive, and they are full of life,“ Green told The Telegraph. „The bottom line is where there is water, there is life.“


The Clipper spacecraft is expected to fly through Europa’s water vapor plumes to analyze what might be in the ocean below.

Foto: An illustration shows a plume of subsurface ocean water vapor escaping through a crack in the icy crust of Europa.sourceNASA/ESA/K. Retherford/SWRI

Radar tools will also measure the thickness of the ice and scan for subsurface water.


That investigation could inform work on a future NASA mission to land a spacecraft on Europa’s surface and punch through the ice.

Foto: An artist’s rendering illustrates a conceptual design for a potential future mission to land a robotic probe on the surface of Europa.sourceNASA/JPL-Caltech

The future lander could search for signs of life in the ocean below, digging 4 inches below Europa’s surface to extract samples for analysis in a mini, on-the-go laboratory.


A nuclear-powered helicopter called Dragonfly will take the search for aliens one planet further, to Saturn’s largest moon, Titan.

Foto: Dragonfly will visit multiple locations on Titan, some hundreds of miles apart.sourceNASA

Getting to the distant, cold moon is not easy – Saturn only gets about 1% of the sunlight that bathes Earth, so a spacecraft can’t rely on solar energy. Instead, Dragonfly will propel itself using the heat of decaying plutonium.

NASA plans to launch the spacecraft in 2026, so it will arrive at Titan in 2034.


Titan is a world with water ice, liquid methane pools, and a thick nitrogen atmosphere. That makes it a contender for alien life.

Foto: A near-infrared, color mosaic from NASA’s Cassini spacecraft shows the sun glinting off of Titan’s north polar seas.sourceNASA/JPL-Caltech/Univ. Arizona/Univ. Idaho

Titan somewhat resembles early Earth, since it has carbon-rich organic materials like methane and ethane.

„On Titan you substitute methane for the water, so you will have a different type of life, a new set of chemicals that would compose a new type of DNA,“ Green told The Telegraph. „It really would be weird.“

What’s more, scientists suspect that an ocean of liquid water might lurk 60 miles below the ice.


NASA’s search extends beyond our solar system as well. A series of telescopes will hunt down signs of life on distant planets that circle other stars.

Foto: An illustration of NASA’s Kepler space telescope.sourceNASA

Thanks to new technology like the Kepler space telescope, scientists have identified over 4,000 exoplanets – the term for planets outside our solar system.

Kepler retired last year after it ran out of fuel, but it passed the planet-hunting torch to the Transiting Exoplanet Survey Satellite (TESS), which launched in April 2018.

TESS will continue scanning the skies through 2022. Astronomers have predicted that the telescope will find dozens of Earth-sized planets and around 500 that are less than twice Earth’s size. Those are the best candidates for alien life.


NASA is also building two new telescopes to expand this search.

Foto: Ball Aerospace optical technician Scott Murray inspects the first gold primary mirror segment, a critical element of NASA’s James Webb Space Telescope.sourceNASA/MSFC/David Higginbotham

The two telescopes – the James Webb Space Telescope and the Wide Field InfraRed Survey Telescope – will hunt for new planets orbiting distant stars and scan them for signs of life.


The James Webb Space Telescope (JWST) will look for signs of alien life in the atmospheres of exoplanets.

Foto: The primary mirror of NASA’s James Webb Space Telescope, consisting of 18 hexagonal mirrors, at the Goddard Space Flight Center in Greenbelt, Maryland, October 28, 2016.sourceNASA/Chris Gunn

The telescope is fully assembled and now faces a long testing process in Northrop Grumman’s California facilities before its launch date on March 30, 2021.


Finding exoplanets with atmospheres and determining which gases make up those atmospheres is a crucial step in pinpointing places we might find alien life.

Foto: An image taken from the International Space Station shows the layers of Earth’s atmosphere.sourceNASA/Marshall Space Flight Center

That’s because an atmosphere keeps a planet’s surface warm enough to hold liquid water and protects it from its star’s radiation. Life on Earth would not be possible without our atmosphere, which also provides many of the chemicals essential to life, like carbon and nitrogen.

JWST could sense warmth, thereby identifying planets with heat-trapping atmospheres, after just a few hours of watching them orbit their stars.


By measuring the intensity of star light passing through a planet’s atmosphere, JWST could also calculate the composition of that atmosphere.

Foto: An artist’s impression of the planet K2-18b, its host star, and an accompanying planet in the system. Scientists detected water vapor in the atmosphere of K2-18b in September 2019.sourceESA/Hubble, M. Kornmesser

JWST’s 21-foot-wide beryllium mirror and new infrared technology will enable it to distinguish between different molecules in the atmospheres of faraway planets.

In certain combinations of these molecules, the telescope could detect signs of life, also known as „biosignatures.“


If an exoplanet’s atmosphere contains both methane and carbon dioxide, for example, those are clues that there could be life.

Foto: An imagined view from the surface of a planet that orbits an ultracool dwarf star 40 light-years from Earth. The system was discovered using the TRAPPIST telescope at the European Southern Observatory’s La Silla Observatory.sourceESO/M. Kornmesser

Earth’s atmosphere has a lot of oxygen because life has been producing it for billions of years. Large amounts of oxygen aren’t stable enough to last long on their own, so the gas must be constantly produced in order to be abundant.

A combination of carbon dioxide and methane (like in Earth’s atmosphere) can be even more telling, since carbon dioxide and methane would normally react with each other to produce new compounds. So if they exist separately, something is probably constantly producing them. That something could be a volcano, but as far as we know, only a lifeform could release that much methane without also belching out carbon monoxide.

JWST will look for clues like that.


One of the first places JWST will search for signs of life is the TRAPPIST-1 system, just 39 light-years away.

Foto: An artist’s impression of the TRAPPIST-1 system, showcasing all seven planets in various phases.sourceNASA

TRAPPIST-1 is a tiny M dwarf star (the most common type of star in the universe) that’s just slightly larger than Jupiter, though much more massive. In its orbit are seven planets about the size of Earth.

Three of them – called TRAPPIST-1 e, f, and g – are in the star’s habitable zone, so they could be warm enough for liquid water to exist.

Scientists have gone back and forth about how habitable these TRAPPIST-1 planets could be: Some studies say not at all while others suggest the worlds could have 250 times more water than Earth.


NASA’s Wide Field InfraRed Survey Telescope (WFIRST) could identify about 2,600 new exoplanets.

Foto: Dave Sime works on the WFIRST primary mirror.sourceHarris Corporation / TJT Photography

The agency plans to launch WFIRST into orbit in the mid-2020s. Over its five-year lifetime, the space telescope will measure light from a billion galaxies and survey the inner Milky Way.


While all these efforts are underway, other scientists will spend the next decade building a new generation of telescopes to search for life on more distant, smaller planets.

Foto: The design for the LUVOIR telescope. If NASA approves it, LUVOIR could block out distant stars‘ light enough to examine the Earth-sized planets circling them.sourceNASA/Goddard Space Flight Center

The proposed LUVOIR telescope, for example, could image 50 Earth-sized exoplanets over four years, studying their atmospheres, seasons, and even surfaces. If chosen for funding and construction, it would launch in the 2030s.

„There’s high confidence that once we build these instruments, we’ll be able to find signatures of life if they’re out there,“ NASA scientist Jessie Christiansen told Business Insider. „I would be surprised if we don’t find something.“

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

Las Vegas Aces Rookie Kate Martin Suffers Ankle Injury in Game Against Chicago Sky

Published

 on

Las Vegas Aces rookie Kate Martin had to be helped off the floor and taken to the locker room after suffering an apparent ankle injury in the first quarter of Tuesday night’s game against the Chicago Sky.

Late in the first quarter, Martin was pushing the ball up the court when she appeared to twist her ankle and lost her balance. The rookie was in serious pain, lying on the floor before eventually being helped off. Her entire team came out in support, and although she managed to put some pressure on the leg, she was taken to the locker room for further evaluation.

Martin returned to the team’s bench late in the second quarter but was ruled out for the remainder of the game.

“Kate Martin is awesome. Kate Martin picks up things so quickly, she’s an amazing sponge,” Aces guard Kelsey Plum said of the rookie during the preseason. “I think (coach) Becky (Hammon) nicknamed her Kate ‘Money’ Martin. I think that’s gonna stick. And when I say ‘money,’ it’s not just about scoring and stuff, she’s just in the right place at the right time. She just makes people better. And that’s what Becky values, that’s what our coaching staff values and that’s why she’s gonna be a great asset to our team.”

Las Vegas selected Martin in the second round of the 2024 WNBA Draft. She was coming off the best season of her collegiate career at Iowa, where she averaged 13.1 points, 6.8 rebounds, and 2.3 assists per game during the 2023-24 campaign. Martin’s integration into the Aces organization has been seamless, with her quickly earning the respect and admiration of her teammates and coaches.

The team and fans alike are hoping for a speedy recovery for Martin, whose contributions have been vital to the Aces’ performance this season.

Continue Reading

Science

Asteroid Apophis will visit Earth in 2029, and this European satellite will be along for the ride

Published

 on

The European Space Agency is fast-tracking a new mission called Ramses, which will fly to near-Earth asteroid 99942 Apophis and join the space rock in 2029 when it comes very close to our planet — closer even than the region where geosynchronous satellites sit.

Ramses is short for Rapid Apophis Mission for Space Safety and, as its name suggests, is the next phase in humanity’s efforts to learn more about near-Earth asteroids (NEOs) and how we might deflect them should one ever be discovered on a collision course with planet Earth.

In order to launch in time to rendezvous with Apophis in February 2029, scientists at the European Space Agency have been given permission to start planning Ramses even before the multinational space agency officially adopts the mission. The sanctioning and appropriation of funding for the Ramses mission will hopefully take place at ESA’s Ministerial Council meeting (involving representatives from each of ESA’s member states) in November of 2025. To arrive at Apophis in February 2029, launch would have to take place in April 2028, the agency says.

This is a big deal because large asteroids don’t come this close to Earth very often. It is thus scientifically precious that, on April 13, 2029, Apophis will pass within 19,794 miles (31,860 kilometers) of Earth. For comparison, geosynchronous orbit is 22,236 miles (35,786 km) above Earth’s surface. Such close fly-bys by asteroids hundreds of meters across (Apophis is about 1,230 feet, or 375 meters, across) only occur on average once every 5,000 to 10,000 years. Miss this one, and we’ve got a long time to wait for the next.

When Apophis was discovered in 2004, it was for a short time the most dangerous asteroid known, being classified as having the potential to impact with Earth possibly in 2029, 2036, or 2068. Should an asteroid of its size strike Earth, it could gouge out a crater several kilometers across and devastate a country with shock waves, flash heating and earth tremors. If it crashed down in the ocean, it could send a towering tsunami to devastate coastlines in multiple countries.

Over time, as our knowledge of Apophis’ orbit became more refined, however, the risk of impact  greatly went down. Radar observations of the asteroid in March of 2021 reduced the uncertainty in Apophis’ orbit from hundreds of kilometers to just a few kilometers, finally removing any lingering worries about an impact — at least for the next 100 years. (Beyond 100 years, asteroid orbits can become too unpredictable to plot with any accuracy, but there’s currently no suggestion that an impact will occur after 100 years.) So, Earth is expected to be perfectly safe in 2029 when Apophis comes through. Still, scientists want to see how Apophis responds by coming so close to Earth and entering our planet’s gravitational field.

“There is still so much we have yet to learn about asteroids but, until now, we have had to travel deep into the solar system to study them and perform experiments ourselves to interact with their surface,” said Patrick Michel, who is the Director of Research at CNRS at Observatoire de la Côte d’Azur in Nice, France, in a statement. “Nature is bringing one to us and conducting the experiment itself. All we need to do is watch as Apophis is stretched and squeezed by strong tidal forces that may trigger landslides and other disturbances and reveal new material from beneath the surface.”

The Goldstone radar’s imagery of asteroid 99942 Apophis as it made its closest approach to Earth, in March 2021. (Image credit: NASA/JPL–Caltech/NSF/AUI/GBO)

By arriving at Apophis before the asteroid’s close encounter with Earth, and sticking with it throughout the flyby and beyond, Ramses will be in prime position to conduct before-and-after surveys to see how Apophis reacts to Earth. By looking for disturbances Earth’s gravitational tidal forces trigger on the asteroid’s surface, Ramses will be able to learn about Apophis’ internal structure, density, porosity and composition, all of which are characteristics that we would need to first understand before considering how best to deflect a similar asteroid were one ever found to be on a collision course with our world.

Besides assisting in protecting Earth, learning about Apophis will give scientists further insights into how similar asteroids formed in the early solar system, and, in the process, how  planets (including Earth) formed out of the same material.

One way we already know Earth will affect Apophis is by changing its orbit. Currently, Apophis is categorized as an Aten-type asteroid, which is what we call the class of near-Earth objects that have a shorter orbit around the sun than Earth does. Apophis currently gets as far as 0.92 astronomical units (137.6 million km, or 85.5 million miles) from the sun. However, our planet will give Apophis a gravitational nudge that will enlarge its orbit to 1.1 astronomical units (164.6 million km, or 102 million miles), such that its orbital period becomes longer than Earth’s.

It will then be classed as an Apollo-type asteroid.

Ramses won’t be alone in tracking Apophis. NASA has repurposed their OSIRIS-REx mission, which returned a sample from another near-Earth asteroid, 101955 Bennu, in 2023. However, the spacecraft, renamed OSIRIS-APEX (Apophis Explorer), won’t arrive at the asteroid until April 23, 2029, ten days after the close encounter with Earth. OSIRIS-APEX will initially perform a flyby of Apophis at a distance of about 2,500 miles (4,000 km) from the object, then return in June that year to settle into orbit around Apophis for an 18-month mission.

Related Stories:

Furthermore, the European Space Agency still plans on launching its Hera spacecraft in October 2024 to follow-up on the DART mission to the double asteroid Didymos and Dimorphos. DART impacted the latter in a test of kinetic impactor capabilities for potentially changing a hazardous asteroid’s orbit around our planet. Hera will survey the binary asteroid system and observe the crater made by DART’s sacrifice to gain a better understanding of Dimorphos’ structure and composition post-impact, so that we can place the results in context.

The more near-Earth asteroids like Dimorphos and Apophis that we study, the greater that context becomes. Perhaps, one day, the understanding that we have gained from these missions will indeed save our planet.

 

728x90x4

Source link

Continue Reading

Science

McMaster Astronomy grad student takes a star turn in Killarney Provincial Park

Published

 on

Astronomy PhD candidate Veronika Dornan served as the astronomer in residence at Killarney Provincial Park. She’ll be back again in October when the nights are longer (and bug free). Dornan has delivered dozens of talks and shows at the W.J. McCallion Planetarium and in the community. (Photos by Veronika Dornan)

Veronika Dornan followed up the April 8 total solar eclipse with another awe-inspiring celestial moment.

This time, the astronomy PhD candidate wasn’t cheering alongside thousands of people at McMaster — she was alone with a telescope in the heart of Killarney Provincial Park just before midnight.

Dornan had the park’s telescope pointed at one of the hundreds of globular star clusters that make up the Milky Way. She was seeing light from thousands of stars that had travelled more than 10,000 years to reach the Earth.

This time there was no cheering: All she could say was a quiet “wow”.

Dornan drove five hours north to spend a week at Killarney Park as the astronomer in residence. part of an outreach program run by the park in collaboration with the Allan I. Carswell Observatory at York University.

Dornan applied because the program combines her two favourite things — astronomy and the great outdoors. While she’s a lifelong camper, hiker and canoeist, it was her first trip to Killarney.

Bruce Waters, who’s taught astronomy to the public since 1981 and co-founded Stars over Killarney, warned Dornan that once she went to the park, she wouldn’t want to go anywhere else.

The park lived up to the hype. Everywhere she looked was like a painting, something “a certain Group of Seven had already thought many times over.”

The dome telescopes at Killarney Provincial Park.

She spent her days hiking the Granite Ridge, Crack and Chikanishing trails and kayaking on George Lake.  At night, she went stargazing with campers — or at least tried to. The weather didn’t cooperate most evenings — instead of looking through the park’s two domed telescopes, Dornan improvised and gave talks in the amphitheatre beneath cloudy skies.

Dornan has delivered dozens of talks over the years in McMaster’s W.J. McCallion Planetarium and out in the community, but “it’s a bit more complicated when you’re talking about the stars while at the same time fighting for your life against swarms of bugs.”

When the campers called it a night and the clouds parted, Dornan spent hours observing the stars. “I seriously messed up my sleep schedule.”

She also gave astrophotography a try during her residency, capturing images of the Ring Nebula and the Great Hercules Cluster.

A star cluster image by Veronika Dornan

“People assume astronomers take their own photos. I needed quite a lot of guidance for how to take the images. It took a while to fiddle with the image properties, but I got my images.”

Dornan’s been invited back for another week-long residency in bug-free October, when longer nights offer more opportunities to explore and photograph the final frontier.

She’s aiming to defend her PhD thesis early next summer, then build a career that continues to combine research and outreach.

“Research leads to new discoveries which gives you exciting things to talk about. And if you’re not connecting with the public then what’s the point of doing research?”

 

728x90x4

Source link

Continue Reading

Trending