We're likely to find alien life in the next decade, scientists say. Here's where NASA plans to look — in our solar system and beyond. - Business Insider - Canada News Media
Connect with us

Science

We're likely to find alien life in the next decade, scientists say. Here's where NASA plans to look — in our solar system and beyond. – Business Insider

Published

on


Many NASA scientists think we’re on the verge of finding alien life.

That’s because the agency plans to dramatically ramp up its search for signs of extraterrestrial life in the next 10 years – in ancient Martian rock, hidden oceans on moons of Jupiter and Saturn, and the atmospheres of faraway planets orbiting other stars.

„With all of this activity related to the search for life, in so many different areas, we are on the verge of one of the most profound discoveries ever,“ Thomas Zurbuchen, NASA’s former administrator, told Congress in 2017.

Ellen Stofan, NASA’s former chief scientist, said in 2015 that she believes we’ll get „strong indications of life beyond Earth in the next decade and definitive evidence in the next 10 to 20 years.“

„We know where to look, we know how to look, and in most cases we have the technology,“ she added, according to the LA Times.

Here’s how NASA plans to track down alien life – in our solar system and beyond.


We’re closer to finding alien life than we’ve ever been.

Foto: Astronaut Scott Kelly took this photo of Japan from the International Space Station and posted it to Twitter on July 25, 2015.sourceNASA/Scott Kelly

„I can’t believe we are the only living entity in the universe,“ astrophysicist and Nobel Prize winner Dider Queloz said during a talk in October. „There are just way too many planets, way too many stars, and the chemistry is universal. The chemistry that led to life has to happen elsewhere.“

Many astrophysicists and astronomers are convinced that it’s not a matter of if we’ll find life – it’s when.


Mars is the closest place where NASA could find signs of alien life.

Foto: A mosaic image of Mars produced with about 100 images from the Viking orbiter.sourceNASA

It’s unlikely that any life is currently thriving on Mars. But scientists think the planet may have hosted life long ago, when it had an atmosphere as thick as Earth’s, which would have kept the Martian surface warm enough to hold liquid water.


In September, NASA chief scientist Jim Green said two rovers set to launch to Mars next year are likely to help scientists find clues about life on the red planet.

Foto: Jim Green gives opening remarks at a NASA media briefing about a Mars-bound spacecraft, September 17, 2014.sourceNASA/Bill Ingalls

He was referring to the Mars 2020 rover, which will look for alien fossils on the red planet, and a similar rover that the European Space Agency is planning to launch in the spring.

„I think we’re close to finding it, and making some announcements,“ he told The Telegraph. Green later clarified that he didn’t mean NASA had already found life.

„What we have are missions that we’re going to launch that will look for life,“ he told Gizmodo.


The Mars 2020 rover will search for signs of ancient microbial life and test out technology that could pave the way for humans to walk the Martian surface.

Foto: Members of NASA’s Mars 2020 project take a selfie after attaching the remote sensing mast to the rover, June 5, 2019.sourceNASA/JPL-Caltech

The robot is slated to launch in July 2020. If all goes according to plan, both rovers will reach Mars in 2021.


It will drill into Martian rock, collect samples, and stash them for future transport back to Earth.

Foto: An artist concept of the proposed NASA Mars Sample Return mission shows the launch of a Martian sample back toward Earth.sourceNASA/JPL-Caltech

„I’m excited about these missions because they have the opportunity to find life, they really do, and I want them to,“ Green told The Telegraph. „We’ve never drilled that deep down. When environments get extreme, life moves into the rocks.“


Beyond Mars, the best place to look for life in our solar system is the hidden ocean on an icy moon of Jupiter called Europa.

Foto: Half of Jupiter’s icy moon Europa as seen via images taken by NASA’s Galileo spacecraft in the late 1990s.sourceNASA/JPL-Caltech/SETI Institute

When Galileo Galilei first looked at Jupiter through his homemade telescope in 1610, he spotted four moons circling the planet. Nearly 400 years later, NASA’s Galileo mission found evidence that one of those moons, Europa, conceals a vast ocean of liquid water beneath its icy crust.


Life could arise around deep-sea volcanic vents in this subsurface ocean.

Foto: An illustration of a submersible robot exploring the subsurface ocean of an icy moon.sourceUploaded by ANGELUS on Wikipedia

On Earth, such vents produce intense heat that rips apart molecules and sparks chemical reactions. Microbes convert the resulting hydrogen into sugar. Rather than photosynthesis (which is fueled by light), this process of „chemosynthesis“ uses chemical reactions, so ecosystems can emerge without sunlight.


NASA is planning to take a closer look at that ocean with the Europa Clipper mission, which could launch as early as 2023.

Foto: An artist’s rendering of NASA’s Europa Clipper spacecraft.sourceNASA/JPL-Caltech

The spacecraft will fly by Europa 45 times, getting as close at 16 miles above the moon’s surface.

„We have gone in nuclear cesspools, places where you’d think nothing could survive, and they are full of life,“ Green told The Telegraph. „The bottom line is where there is water, there is life.“


The Clipper spacecraft is expected to fly through Europa’s water vapor plumes to analyze what might be in the ocean below.

Foto: An illustration shows a plume of subsurface ocean water vapor escaping through a crack in the icy crust of Europa.sourceNASA/ESA/K. Retherford/SWRI

Radar tools will also measure the thickness of the ice and scan for subsurface water.


That investigation could inform work on a future NASA mission to land a spacecraft on Europa’s surface and punch through the ice.

Foto: An artist’s rendering illustrates a conceptual design for a potential future mission to land a robotic probe on the surface of Europa.sourceNASA/JPL-Caltech

The future lander could search for signs of life in the ocean below, digging 4 inches below Europa’s surface to extract samples for analysis in a mini, on-the-go laboratory.


A nuclear-powered helicopter called Dragonfly will take the search for aliens one planet further, to Saturn’s largest moon, Titan.

Foto: Dragonfly will visit multiple locations on Titan, some hundreds of miles apart.sourceNASA

Getting to the distant, cold moon is not easy – Saturn only gets about 1% of the sunlight that bathes Earth, so a spacecraft can’t rely on solar energy. Instead, Dragonfly will propel itself using the heat of decaying plutonium.

NASA plans to launch the spacecraft in 2026, so it will arrive at Titan in 2034.


Titan is a world with water ice, liquid methane pools, and a thick nitrogen atmosphere. That makes it a contender for alien life.

Foto: A near-infrared, color mosaic from NASA’s Cassini spacecraft shows the sun glinting off of Titan’s north polar seas.sourceNASA/JPL-Caltech/Univ. Arizona/Univ. Idaho

Titan somewhat resembles early Earth, since it has carbon-rich organic materials like methane and ethane.

„On Titan you substitute methane for the water, so you will have a different type of life, a new set of chemicals that would compose a new type of DNA,“ Green told The Telegraph. „It really would be weird.“

What’s more, scientists suspect that an ocean of liquid water might lurk 60 miles below the ice.


NASA’s search extends beyond our solar system as well. A series of telescopes will hunt down signs of life on distant planets that circle other stars.

Foto: An illustration of NASA’s Kepler space telescope.sourceNASA

Thanks to new technology like the Kepler space telescope, scientists have identified over 4,000 exoplanets – the term for planets outside our solar system.

Kepler retired last year after it ran out of fuel, but it passed the planet-hunting torch to the Transiting Exoplanet Survey Satellite (TESS), which launched in April 2018.

TESS will continue scanning the skies through 2022. Astronomers have predicted that the telescope will find dozens of Earth-sized planets and around 500 that are less than twice Earth’s size. Those are the best candidates for alien life.


NASA is also building two new telescopes to expand this search.

Foto: Ball Aerospace optical technician Scott Murray inspects the first gold primary mirror segment, a critical element of NASA’s James Webb Space Telescope.sourceNASA/MSFC/David Higginbotham

The two telescopes – the James Webb Space Telescope and the Wide Field InfraRed Survey Telescope – will hunt for new planets orbiting distant stars and scan them for signs of life.


The James Webb Space Telescope (JWST) will look for signs of alien life in the atmospheres of exoplanets.

Foto: The primary mirror of NASA’s James Webb Space Telescope, consisting of 18 hexagonal mirrors, at the Goddard Space Flight Center in Greenbelt, Maryland, October 28, 2016.sourceNASA/Chris Gunn

The telescope is fully assembled and now faces a long testing process in Northrop Grumman’s California facilities before its launch date on March 30, 2021.


Finding exoplanets with atmospheres and determining which gases make up those atmospheres is a crucial step in pinpointing places we might find alien life.

Foto: An image taken from the International Space Station shows the layers of Earth’s atmosphere.sourceNASA/Marshall Space Flight Center

That’s because an atmosphere keeps a planet’s surface warm enough to hold liquid water and protects it from its star’s radiation. Life on Earth would not be possible without our atmosphere, which also provides many of the chemicals essential to life, like carbon and nitrogen.

JWST could sense warmth, thereby identifying planets with heat-trapping atmospheres, after just a few hours of watching them orbit their stars.


By measuring the intensity of star light passing through a planet’s atmosphere, JWST could also calculate the composition of that atmosphere.

Foto: An artist’s impression of the planet K2-18b, its host star, and an accompanying planet in the system. Scientists detected water vapor in the atmosphere of K2-18b in September 2019.sourceESA/Hubble, M. Kornmesser

JWST’s 21-foot-wide beryllium mirror and new infrared technology will enable it to distinguish between different molecules in the atmospheres of faraway planets.

In certain combinations of these molecules, the telescope could detect signs of life, also known as „biosignatures.“


If an exoplanet’s atmosphere contains both methane and carbon dioxide, for example, those are clues that there could be life.

Foto: An imagined view from the surface of a planet that orbits an ultracool dwarf star 40 light-years from Earth. The system was discovered using the TRAPPIST telescope at the European Southern Observatory’s La Silla Observatory.sourceESO/M. Kornmesser

Earth’s atmosphere has a lot of oxygen because life has been producing it for billions of years. Large amounts of oxygen aren’t stable enough to last long on their own, so the gas must be constantly produced in order to be abundant.

A combination of carbon dioxide and methane (like in Earth’s atmosphere) can be even more telling, since carbon dioxide and methane would normally react with each other to produce new compounds. So if they exist separately, something is probably constantly producing them. That something could be a volcano, but as far as we know, only a lifeform could release that much methane without also belching out carbon monoxide.

JWST will look for clues like that.


One of the first places JWST will search for signs of life is the TRAPPIST-1 system, just 39 light-years away.

Foto: An artist’s impression of the TRAPPIST-1 system, showcasing all seven planets in various phases.sourceNASA

TRAPPIST-1 is a tiny M dwarf star (the most common type of star in the universe) that’s just slightly larger than Jupiter, though much more massive. In its orbit are seven planets about the size of Earth.

Three of them – called TRAPPIST-1 e, f, and g – are in the star’s habitable zone, so they could be warm enough for liquid water to exist.

Scientists have gone back and forth about how habitable these TRAPPIST-1 planets could be: Some studies say not at all while others suggest the worlds could have 250 times more water than Earth.


NASA’s Wide Field InfraRed Survey Telescope (WFIRST) could identify about 2,600 new exoplanets.

Foto: Dave Sime works on the WFIRST primary mirror.sourceHarris Corporation / TJT Photography

The agency plans to launch WFIRST into orbit in the mid-2020s. Over its five-year lifetime, the space telescope will measure light from a billion galaxies and survey the inner Milky Way.


While all these efforts are underway, other scientists will spend the next decade building a new generation of telescopes to search for life on more distant, smaller planets.

Foto: The design for the LUVOIR telescope. If NASA approves it, LUVOIR could block out distant stars‘ light enough to examine the Earth-sized planets circling them.sourceNASA/Goddard Space Flight Center

The proposed LUVOIR telescope, for example, could image 50 Earth-sized exoplanets over four years, studying their atmospheres, seasons, and even surfaces. If chosen for funding and construction, it would launch in the 2030s.

„There’s high confidence that once we build these instruments, we’ll be able to find signatures of life if they’re out there,“ NASA scientist Jessie Christiansen told Business Insider. „I would be surprised if we don’t find something.“

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Astronaut craves salsa and surf after record 11 months aloft – World News – Castanet.net

Published

on


After nearly 11 months in orbit, the astronaut holding the record for the longest spaceflight by a woman can’t wait to dig into some salsa and chips, and swim and surf in the Gulf of Mexico.

NASA astronaut Christina Koch told The Associated Press on Tuesday — her 319th consecutive day in space — that taking part in the first all-female spacewalk was the highlight of her mission. She’s been living on the International Space Station since March and returns to Earth on Feb. 6, landing in Kazakhstan with two colleagues aboard a Russian capsule.

Koch said she and fellow NASA astronaut Jessica Meir appreciated that the Oct. 18 spacewalk “could serve as an inspiration for future space explorers.”

“We both drew a lot of inspiration from seeing people that were reflections of ourselves as we were growing up and developing our dreams to become astronauts,” Koch said from the space station. “So to recognize that maybe we could pay that forward and serve the same for those that are up and coming was just such a highlight.”

Koch’s astronaut class of 2013 was split equally between women and men, but NASA’s astronaut corps as a whole is male dominated. Right now, four men and two women are living at the space station.

“Diversity is important, and I think it is something worth fighting for,” said Koch, an electrical engineer who also has a physics degree.

Koch’s 328-day mission will be the second-longest by an American, trailing Scott Kelly’s flight by 12 days. She’s already set a record for the longest single spaceflight by a woman.

She took time out for a pair of news interviews Tuesday, the 34th anniversary of the space shuttle Challenger accident that claimed all seven lives on board.

She said she loves her work — she conducted six spacewalks and tended to science experiments — but she also misses her friends and family.

“If they could visit here, I would continue staying for a very long time,” said Koch, a first-time space flier. “For their sake, I think that it’s probably time to head home.”

Why do chips and salsa top her most-missed food list? Crunchy food like chips are banned on the space station because the crumbs could float away and clog equipment. “I haven’t had chips in about 10 1/2 months,” she explained, “but I have had a fresh apple” thanks to regular cargo deliveries.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Potential satellite collision shows need for active debris removal – SpaceNews

Published

on


WASHINGTON — Two decades-old defunct spacecraft are in danger of colliding Jan. 29, an event experts argue is more evidence of the need to clean up low Earth orbit.

LeoLabs, a California company that operates a network of ground-based radars that track objects in orbit, announced Jan. 27 that it had identified a potential conjunction, or close approach, between the Infrared Astronomical Satellite (IRAS) and the Gravity Gradient Stabilization Experiment (GGSE) 4 satellite in LEO. The company said there was an approximately 1-in-100 chance that the two satellites would collide at 6:39 p.m. Eastern Jan. 29 an altitude of about 900 kilometers, almost directly above the city of Pittsburgh.

LeoLabs, in an update Jan. 28, revised the probability of a collision downward, to about 1 in 1,000, estimating that the two spacecraft will pass between 13 and 87 meters of each other. Other sources have estimated similar probabilities of a collision between the two objects using other data, such as that from the catalog maintained by the U.S. Air Force.

Neither IRAS, launched in 1983, nor GGSE-4, launched in 1967, are operational today and have the ability to maneuver. While close approaches between debris are not uncommon, the circumstances of this event make it unusual and, to some orbital debris experts, worrying.

“This is a little bit unusual,” said Dan Oltrogge, director of the Center for Space Standards and Innovation at Analytical Graphics, Inc., in a Jan. 28 interview. The two spacecraft are in “counterrotating” orbits, meaning a collision would effectively be head-on, at an estimated relative velocity of 14.9 kilometers per second. That would maximize the energy of any collision.

Moreover, IRAS is a large satellite, with a mass of more than 1,000 kilograms. GGSE-4 — also known as POPPY-5B, a signals intelligence satellite — is much smaller, at 85 kilograms. However, it has a boom 18 meters long that will be perpendicular to the direction of motion. “In this case, that tends to maximize the collision potential,” Oltrogge said.

It may not be clear for hours after closest approach if the two satellites avoided a collision, depending on what assets are available to track them. Even if they miss, though, he said the conjunction should serve as a reminder of the hazards that other large objects, both satellites and upper stages, pose in Earth orbit, and the need to remove them.

“Even if these don’t hit, there will be others that will,” he said. “I think this can serve as a wakeup call for us to look at not only avoiding collisions with active satellites, but also remediating, figuring out how to remove debris in orbit.”

A paper that Oltrogge and others presented at the International Astronautical Congress in October 2019 discussed the risks of such collisions. They modeled the collision of two upper stages in orbit at 981 kilometers, concluding it could create between 3,375 and 12,860 objects at least 5 to 10 centimeters in size, as well as more than 200,000 additional debris objects at least 1 centimeter across dubbed “lethal nontrackable” because they are large enough to damage or destroy a satellite but too small to be tracked.

Another co-author of that paper was Darren McKnight of Centauri, who made similar arguments in a presentation at the Advanced Maui Optical and Space Surveillance Technologies conference in September. He noted that, in May, two rocket bodies that are part of a “cluster” of such objects at an altitude of 850 kilometers passed within 87 meters of each other. “They’re big yellow school buses with no driver,” he said. “If they collide, it would have doubled the catalog population in one event.”

“I would hope that we could take this, and other conjunction events and close approaches, to try and get another look at active debris removal and other remediation techniques,” Oltrogge said of this potential conjunction. “But time will tell.”

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Can Alexa save your life? U of A researchers put virtual assistants to the test in new study – CTV News

Published

on


EDMONTON —
Could your virtual assistant save your life in an emergency situation? A new study by researchers at the University of Alberta suggests that the technology is not there yet.

According to the researchers, two-thirds of medical emergencies happen at home, and with voice-activated internet searches expected to make up 50 per cent of searches by the end of the year, they wanted to determine if the devices could be counted on to provide life-saving information in an emergency.

“Despite being relatively new, these devices show exciting promise to get first aid information into the hands of people who need it in their homes when they need it the most,” said Matthew Douma, an assistant adjunct professor in critical care medicine, who co-authored the study.

Using 123 questions about 39 first aid topics, including heart attacks, poisoning, nosebleeds and slivers, researchers tested Alexa, Google Home, Siri and Cortana. They analyzed the devices’ answers for accuracy of topic recognition, detection of the severity of the emergency, complexity of the language used, and how closely the advice given fit with accepted first aid treatment guidelines.

“We were hoping to find that the devices would have a better response rate, especially to statements like ‘someone is dying’ and ‘I want to die,’ versus things like ‘I have a sunburn or a sliver,'” said lead author Christopher Picard, a master’s student in the Faculty of Nursing and a clinical educator at Edmonton’s Misericordia Community Hospital emergency department.

“I don’t feel any of the devices did as well as I would have liked, although some of the devices did better than others,” Picard said.

The study found that Google Home performed the best, recognizing 98 per cent of topics accurately and providing advice that matched with Red Cross first aid guidelines 56 per cent of the time.

Alexa recognized 92 per cent of topics, and gave appropriate advice 19 per cent of the time.

The responses from Siri and Cortana were so low that researchers determined that they couldn’t analyze them.

Picard said that most of the responses from the virtual assistants were excerpts from web pages, instead of complete information. Despite that, he feels there’s still some potential.

“If I had a loved one who is facing an emergency situation, I would prefer them to ask the device than to do nothing at all,” Picard said.

He believes that in the future, the devices will improve to a point where they can listen for symptoms such as breathing patterns associated with cardiac arrest and automatically dial 911.

“At best, Alexa and Google might be able to help save a life about half the time,” said Douma. “For now, people should still keep calling 911 but in the future help might be a little closer.” 

Let’s block ads! (Why?)



Source link

Continue Reading

Trending