Connect with us

Science

White Dwarfs + Compact Objects – Trottier Institute for Research on Exoplanets

Published

 on

Our Institute’s researchers study more than just exoplanets. In addition to planets and the stars they orbit, our scientists also look at “dead” stars. Sometimes called compact objects or stellar remnants, these are the objects leftover at the end of a star’s life, once it has used up all of its fuel.

Death of a star

The most common type of stellar remnant is a white dwarf, the final fate of more than 97% of the stars in our Galaxy. White dwarfs are created when a small-to-moderately-large sized star burns all of its nuclear fusion fuel, and its core contracts. The outer layers are blown away to create a beautiful planetary nebula, revealing the dense core which has become a white dwarf. Imagine an object with mass similar to our Sun, but compressed down to the size of the Earth. A teaspoon of white dwarf material would weigh as much as three African elephants! This will be the ultimate fate of our own star, the Sun.

An artist’s rendering of an exoplanet orbiting the pulsar PSR B1257+12. (Credit: NASA/JPL-Caltech)

Neutron stars are even more extreme stellar remnants. They are formed when very large stars run out of fuel. The process begins the same way as for white dwarfs, but in this case, there is too much mass and the contracting core squeezes past the white dwarf stage. The core squeezes down into a ball of pure neutrons.  They can have several times the mass of our Sun, but are only about as large as a city. These are the densest objects we know of, and a small handful of neutron star material on Earth would weigh as much as a mountain!

For the most massive stars, the collapse crushes even the ultra-dense ball of neutrons. These huge stars can turn into black holes when they exhaust their fuel. Black holes are extreme objects that have so much matter packed into such a tiny space that not even light goes fast enough to escape if it wanders too close.

Planets around dead stars?

What do these compact objects have to do with exoplanets? Since stellar remnants were once stars, they may have had planetary systems. They may have even retained their planets after their deaths. In fact, the first exoplanets ever discovered were not found around a regular star, but rather around a neutron star.

There is a special category of neutron stars called pulsars. They get this name because they rotate and pulse radio waves with incredible regularity, making pulsars some of the most stable clocks in the Universe. This regular pulse pattern can wobble slightly if other objects orbit the pulsar.  It was exactly this kind of pulsar wobble that revealed the very first confirmed exoplanet in 1992 around the pulsar PSR 1257+12. This discovery was made by Canadian astronomer Dale Frail (DRAO) and Polish astronomer Aleksander Wolszczan.

Polluted white dwarfs

An artist’s rendering of a destroyed comet around the white dwarf G29-38. (Credit: NASA/JPL-Caltech/GSFC)

White dwarfs provide a very different way of studying exoplanets. One important way that white dwarfs are different from regular stars is their high surface gravity. The gravity on the surface of a white dwarf would make a human weigh millions of kilograms! This causes heavier elements to sink rapidly, leaving a very clean and pure surface of mostly hydrogen and helium. As astronomers studied more white dwarfs, they discovered that some are “polluted” with heavier elements. The only way these heavy elements could be at the surface is if they were recently or continuously deposited there.

How could white dwarfs get polluted atmospheres? As a regular star nears the end of its life and eventually turns into a white dwarf, it can cause gravitational instabilities in its system. Objects such as planets, asteroids, and comets that may have been on stable orbits before the star died might now become unstable. If one of them falls too close to the white dwarf, it can easily be torn apart and form a disc of material that gets accreted onto the surface. Such polluted white dwarfs show us what these shredded objects were made of. This is different from measuring the composition of an exoplanet’s atmosphere, because polluted white dwarfs also reveal the planet’s crust and core materials, not just the atmospheric gasses.

No planets are yet known to exist around black holes, but that doesn’t mean it’s not possible. Researchers are currently looking for signs of planets in systems called x-ray binaries, where a black hole feeds off a stellar companion and emits strong x-rays.

White dwarfs and compact objects at iREx

Many of our iREx researchers are experts on these stellar remnants. Their expertise in these strange objects helps us to study exoplanets in unique ways. To learn more, we invite you to read their profiles:

Source link

Continue Reading

Science

Las Vegas Aces Rookie Kate Martin Suffers Ankle Injury in Game Against Chicago Sky

Published

 on

Las Vegas Aces rookie Kate Martin had to be helped off the floor and taken to the locker room after suffering an apparent ankle injury in the first quarter of Tuesday night’s game against the Chicago Sky.

Late in the first quarter, Martin was pushing the ball up the court when she appeared to twist her ankle and lost her balance. The rookie was in serious pain, lying on the floor before eventually being helped off. Her entire team came out in support, and although she managed to put some pressure on the leg, she was taken to the locker room for further evaluation.

Martin returned to the team’s bench late in the second quarter but was ruled out for the remainder of the game.

“Kate Martin is awesome. Kate Martin picks up things so quickly, she’s an amazing sponge,” Aces guard Kelsey Plum said of the rookie during the preseason. “I think (coach) Becky (Hammon) nicknamed her Kate ‘Money’ Martin. I think that’s gonna stick. And when I say ‘money,’ it’s not just about scoring and stuff, she’s just in the right place at the right time. She just makes people better. And that’s what Becky values, that’s what our coaching staff values and that’s why she’s gonna be a great asset to our team.”

Las Vegas selected Martin in the second round of the 2024 WNBA Draft. She was coming off the best season of her collegiate career at Iowa, where she averaged 13.1 points, 6.8 rebounds, and 2.3 assists per game during the 2023-24 campaign. Martin’s integration into the Aces organization has been seamless, with her quickly earning the respect and admiration of her teammates and coaches.

The team and fans alike are hoping for a speedy recovery for Martin, whose contributions have been vital to the Aces’ performance this season.

Continue Reading

Science

Asteroid Apophis will visit Earth in 2029, and this European satellite will be along for the ride

Published

 on

The European Space Agency is fast-tracking a new mission called Ramses, which will fly to near-Earth asteroid 99942 Apophis and join the space rock in 2029 when it comes very close to our planet — closer even than the region where geosynchronous satellites sit.

Ramses is short for Rapid Apophis Mission for Space Safety and, as its name suggests, is the next phase in humanity’s efforts to learn more about near-Earth asteroids (NEOs) and how we might deflect them should one ever be discovered on a collision course with planet Earth.

In order to launch in time to rendezvous with Apophis in February 2029, scientists at the European Space Agency have been given permission to start planning Ramses even before the multinational space agency officially adopts the mission. The sanctioning and appropriation of funding for the Ramses mission will hopefully take place at ESA’s Ministerial Council meeting (involving representatives from each of ESA’s member states) in November of 2025. To arrive at Apophis in February 2029, launch would have to take place in April 2028, the agency says.

This is a big deal because large asteroids don’t come this close to Earth very often. It is thus scientifically precious that, on April 13, 2029, Apophis will pass within 19,794 miles (31,860 kilometers) of Earth. For comparison, geosynchronous orbit is 22,236 miles (35,786 km) above Earth’s surface. Such close fly-bys by asteroids hundreds of meters across (Apophis is about 1,230 feet, or 375 meters, across) only occur on average once every 5,000 to 10,000 years. Miss this one, and we’ve got a long time to wait for the next.

When Apophis was discovered in 2004, it was for a short time the most dangerous asteroid known, being classified as having the potential to impact with Earth possibly in 2029, 2036, or 2068. Should an asteroid of its size strike Earth, it could gouge out a crater several kilometers across and devastate a country with shock waves, flash heating and earth tremors. If it crashed down in the ocean, it could send a towering tsunami to devastate coastlines in multiple countries.

Over time, as our knowledge of Apophis’ orbit became more refined, however, the risk of impact  greatly went down. Radar observations of the asteroid in March of 2021 reduced the uncertainty in Apophis’ orbit from hundreds of kilometers to just a few kilometers, finally removing any lingering worries about an impact — at least for the next 100 years. (Beyond 100 years, asteroid orbits can become too unpredictable to plot with any accuracy, but there’s currently no suggestion that an impact will occur after 100 years.) So, Earth is expected to be perfectly safe in 2029 when Apophis comes through. Still, scientists want to see how Apophis responds by coming so close to Earth and entering our planet’s gravitational field.

“There is still so much we have yet to learn about asteroids but, until now, we have had to travel deep into the solar system to study them and perform experiments ourselves to interact with their surface,” said Patrick Michel, who is the Director of Research at CNRS at Observatoire de la Côte d’Azur in Nice, France, in a statement. “Nature is bringing one to us and conducting the experiment itself. All we need to do is watch as Apophis is stretched and squeezed by strong tidal forces that may trigger landslides and other disturbances and reveal new material from beneath the surface.”

The Goldstone radar’s imagery of asteroid 99942 Apophis as it made its closest approach to Earth, in March 2021. (Image credit: NASA/JPL–Caltech/NSF/AUI/GBO)

By arriving at Apophis before the asteroid’s close encounter with Earth, and sticking with it throughout the flyby and beyond, Ramses will be in prime position to conduct before-and-after surveys to see how Apophis reacts to Earth. By looking for disturbances Earth’s gravitational tidal forces trigger on the asteroid’s surface, Ramses will be able to learn about Apophis’ internal structure, density, porosity and composition, all of which are characteristics that we would need to first understand before considering how best to deflect a similar asteroid were one ever found to be on a collision course with our world.

Besides assisting in protecting Earth, learning about Apophis will give scientists further insights into how similar asteroids formed in the early solar system, and, in the process, how  planets (including Earth) formed out of the same material.

One way we already know Earth will affect Apophis is by changing its orbit. Currently, Apophis is categorized as an Aten-type asteroid, which is what we call the class of near-Earth objects that have a shorter orbit around the sun than Earth does. Apophis currently gets as far as 0.92 astronomical units (137.6 million km, or 85.5 million miles) from the sun. However, our planet will give Apophis a gravitational nudge that will enlarge its orbit to 1.1 astronomical units (164.6 million km, or 102 million miles), such that its orbital period becomes longer than Earth’s.

It will then be classed as an Apollo-type asteroid.

Ramses won’t be alone in tracking Apophis. NASA has repurposed their OSIRIS-REx mission, which returned a sample from another near-Earth asteroid, 101955 Bennu, in 2023. However, the spacecraft, renamed OSIRIS-APEX (Apophis Explorer), won’t arrive at the asteroid until April 23, 2029, ten days after the close encounter with Earth. OSIRIS-APEX will initially perform a flyby of Apophis at a distance of about 2,500 miles (4,000 km) from the object, then return in June that year to settle into orbit around Apophis for an 18-month mission.

Related Stories:

Furthermore, the European Space Agency still plans on launching its Hera spacecraft in October 2024 to follow-up on the DART mission to the double asteroid Didymos and Dimorphos. DART impacted the latter in a test of kinetic impactor capabilities for potentially changing a hazardous asteroid’s orbit around our planet. Hera will survey the binary asteroid system and observe the crater made by DART’s sacrifice to gain a better understanding of Dimorphos’ structure and composition post-impact, so that we can place the results in context.

The more near-Earth asteroids like Dimorphos and Apophis that we study, the greater that context becomes. Perhaps, one day, the understanding that we have gained from these missions will indeed save our planet.

 

728x90x4

Source link

Continue Reading

Science

McMaster Astronomy grad student takes a star turn in Killarney Provincial Park

Published

 on

Astronomy PhD candidate Veronika Dornan served as the astronomer in residence at Killarney Provincial Park. She’ll be back again in October when the nights are longer (and bug free). Dornan has delivered dozens of talks and shows at the W.J. McCallion Planetarium and in the community. (Photos by Veronika Dornan)

Veronika Dornan followed up the April 8 total solar eclipse with another awe-inspiring celestial moment.

This time, the astronomy PhD candidate wasn’t cheering alongside thousands of people at McMaster — she was alone with a telescope in the heart of Killarney Provincial Park just before midnight.

Dornan had the park’s telescope pointed at one of the hundreds of globular star clusters that make up the Milky Way. She was seeing light from thousands of stars that had travelled more than 10,000 years to reach the Earth.

This time there was no cheering: All she could say was a quiet “wow”.

Dornan drove five hours north to spend a week at Killarney Park as the astronomer in residence. part of an outreach program run by the park in collaboration with the Allan I. Carswell Observatory at York University.

Dornan applied because the program combines her two favourite things — astronomy and the great outdoors. While she’s a lifelong camper, hiker and canoeist, it was her first trip to Killarney.

Bruce Waters, who’s taught astronomy to the public since 1981 and co-founded Stars over Killarney, warned Dornan that once she went to the park, she wouldn’t want to go anywhere else.

The park lived up to the hype. Everywhere she looked was like a painting, something “a certain Group of Seven had already thought many times over.”

The dome telescopes at Killarney Provincial Park.

She spent her days hiking the Granite Ridge, Crack and Chikanishing trails and kayaking on George Lake.  At night, she went stargazing with campers — or at least tried to. The weather didn’t cooperate most evenings — instead of looking through the park’s two domed telescopes, Dornan improvised and gave talks in the amphitheatre beneath cloudy skies.

Dornan has delivered dozens of talks over the years in McMaster’s W.J. McCallion Planetarium and out in the community, but “it’s a bit more complicated when you’re talking about the stars while at the same time fighting for your life against swarms of bugs.”

When the campers called it a night and the clouds parted, Dornan spent hours observing the stars. “I seriously messed up my sleep schedule.”

She also gave astrophotography a try during her residency, capturing images of the Ring Nebula and the Great Hercules Cluster.

A star cluster image by Veronika Dornan

“People assume astronomers take their own photos. I needed quite a lot of guidance for how to take the images. It took a while to fiddle with the image properties, but I got my images.”

Dornan’s been invited back for another week-long residency in bug-free October, when longer nights offer more opportunities to explore and photograph the final frontier.

She’s aiming to defend her PhD thesis early next summer, then build a career that continues to combine research and outreach.

“Research leads to new discoveries which gives you exciting things to talk about. And if you’re not connecting with the public then what’s the point of doing research?”

 

728x90x4

Source link

Continue Reading

Trending