Science
Mysterious spiral captured amid Northern Lights in the skies of Alaska


|
A blue spiral that looked like a galaxy – or perhaps a portal to another dimension – was pictured in the skies above the US state of Alaska over the weekend. The reason behind its appearance is, however, fairly mundane.
Already enjoying a light show put on by the aurora borealis, skywatchers were shocked to see the spiral appear on Saturday for a few minutes.
While it looked like something out of Philip Pullman’s His Dark Materials series, where the protagonists move between worlds in a portal opened amid the Northern Lights, the spiral was in fact caused by frozen rocket fuel.
A SpaceX rocket had launched from California around three hours before the spiral appeared. Rockets sometimes jettison their remaining fuel, explained space physicist Don Hampton, a research associate professor at the University of Alaska Fairbanks Geophysical Institute.
“When they do that at high altitudes, that fuel turns into ice,” he said. “And if it happens to be in the sunlight, when you’re in the darkness on the ground, you can see it as a sort of big cloud, and sometimes it’s swirly”.
While not a common sight, Hampton said he’s seen such occurrences about three times.
The appearance of the swirl was caught in time-lapse on the Geophysical Institute’s all-sky camera and shared widely. “It created a bit of an Internet storm with that spiral,” Hampton said.
Photographers out for the Northern Lights show also posted their photos on social media.
The rocket took off from Vandenberg Space Force Base in California on Friday night with about 25 satellites as its payload.
It was a polar launch, which made it visible over a large swath of Alaska.
The timing of the fuel dump was timed correctly for visibility over Alaska. “And we got that really cool-looking spiral thing,” he said.
While it looked like a galaxy going over Alaska, he assures it wasn’t.
“I can tell you it’s not a galaxy,” he said. “It’s just water vapour reflecting sunlight”.
In January, another spiral was seen, this time over Hawaii’s Big Island. A camera at the summit of Mauna Kea, outside the National Astronomical Observatory of Japan’s Subaru telescope, captured a spiral swirling through the night sky.
Researchers have said it was from the launch of a military GPS satellite that lifted off earlier on a SpaceX rocket in Florida.





Science
Made-in-Saskatchewan satellite heading to orbit on SpaceX rocket


|
SASKATOON – Saskatchewan engineering students will have their eyes on the sky as the province’s first homegrown satellite is to be launched on board a SpaceX rocket headed for the International Space Station.
“I am so excited about it,” said Rylee Moody, a third-year student at the University of Saskatchewan.
“It’s something I would never have dreamed of doing.”
Engineering students at the University of Saskatchewan spent five years developing the cube satellite called RADSAT-SK. It is set to be launched into space Saturday.
RADSAT-SK will be sent into its own orbit for a year, where it will collect radiation data that will be analyzed at a ground station located near the university’s campus.
The project was part of a Canadian Space Agency project that saw 15 universities get grants to build CubeSats — cubical, standard-sized miniature satellites that generally weigh about a kilogram.
Sean Maw, a principal investigator and chair in innovative teaching at the College of Engineering, said Saskatchewan’s project began in 2018 with about 20 engineering undergraduate students. Since then, hundreds of students have put in tens of thousands of hours to ensure ideas became reality.
It was no easy task to get from a satellite concocted in a Saskatchewan university to infinity and beyond. Students designed, built, tested and integrated the satellite.
They also navigated the complicated international regulatory environment to get it approved for launch. A global pandemic certainly didn’t make it easier, Maw added.
“Students persevered through the whole COVID crisis to get this project done,” Maw said. “Especially in the last 12 months or so they fought tooth and nail to get RADSAT-SK to the finish line.”
The team came up with a motto to get through the tough times: fail hard, fail fast, recover.
The satellite’s payload, what it carries as it orbits earth, is focused on radiation research. A Saskatchewan-made dosimeter board will measure radiation from space and a fungal melanin coating on board will test the feasibility of the polymer to shield space radiation.
Arliss Sidlowksi, a fourth-year student, said it has been an incredible and challenging experience getting the satellite ready for orbit.
“I am so proud of our team for their resilience,” she said.
“We experienced numerous challenges over the years. Our members viewed each setback as an opportunity to learn, adapt and proving time and time again their perseverance and intelligence.”
Sidlowksi said she hopes it will inspire other students to see themselves working in the space industry while also showing the rest of the country what Saskatchewan has to offer.
“I think it’s really opening up Saskatchewan to the space sector.”
It’s very important students have the support to dream for the stars, Maw added. Decades ago when he was getting his undergraduate degree at the University of Waterloo he brought a group of students together to build a satellite.
The project wasn’t supported. And the satellite never got off ground.
“I wasn’t going to let that happen to these guys,” Maw said.
“Their efforts were truly remarkable.”
This report by The Canadian Press was first published May 29, 2023.





Science
Why do animals keep evolving into crabs?
|
A flat, rounded shell. A tail that’s folded under the body. This is what a crab looks like, and apparently what peak performance might look like — at least according to evolution. A crab-like body plan has evolved at least five separate times among decapod crustaceans, a group that includes crabs, lobsters and shrimp. In fact, it’s happened so often that there’s a name for it: carcinization.
So why do animals keep evolving into crab-like forms? Scientists don’t know for sure, but they have lots of ideas.
Carcinization is an example of a phenomenon called convergent evolution, which is when different groups independently evolve the same traits. It’s the same reason both bats and birds have wings. But intriguingly, the crab-like body plan has emerged many times among very closely related animals.
The fact that it’s happening at such a fine scale “means that evolution is flexible and dynamic,” Javier Luque, a senior research associate in the Department of Zoology at the University of Cambridge, told Live Science.
Related: Does evolution ever go backward?
Crustaceans have repeatedly gone from having a cylindrical body plan with a big tail — characteristic of a shrimp or a lobster — to a flatter, rounder, crabbier look, with a much less prominent tail. The result is that many crustaceans that resemble crabs, like the tasty king crab that’s coveted as a seafood delicacy, aren’t even technically “true crabs.” They’ve adopted a crab-like body plan, but actually belong to a closely related group of crustaceans called “false crabs.”
When a trait appears in an animal and sticks around through generations, it’s a sign that the trait is advantageous for the species — that’s the basic principle of natural selection. Animals with crabby forms come in many sizes and thrive in a wide array of habitats, from mountains to the deep sea. Their diversity makes it tricky to pin down a single common benefit for their body plan, said Joanna Wolfe, a research associate in organismic and evolutionary biology at Harvard University.
Wolfe and colleagues laid out a few possibilities in a 2021 paper in the journal BioEssays. For example, crabs’ tucked-in tail, versus the lobster’s much more prominent one, could reduce the amount of vulnerable flesh that’s accessible to predators. And the flat, rounded shell could help a crab scuttle sideways more effectively than a cylindrical lobster body would allow.
But more research is needed to test those hypotheses, Wolfe said. She is also trying to use genetic data to better understand the relationships among different decapod crustaceans, to more accurately pinpoint when various “crabby” lineages evolved, and pick apart the factors driving carcinization.
There’s another possible explanation: “It’s possible that having a crab body isn’t necessarily advantageous, and maybe it’s a consequence of something else in the organism,” Wolfe said. For example, the crab body plan might be so successful not because of the shell or tail shape itself, but because of the possibilities that this shape opens up for other parts of the body, said Luque, who is a co-author of the 2021 paper with Wolfe.
For example, a lobster’s giant tail can propel the animal through the water and help it crush prey. But it can also get in the way and constrain other features, Luque said. The crab body shape might leave more flexibility for animals to evolve specialized roles for their legs beyond walking, allowing crabs to easily adapt to new habitats. Some crabs have adapted their legs for digging under sediment or paddling through water.
“We think that the crab body plan has evolved so many times independently because of the versatility that the animals have,” Luque said. “That allows them to go places that no other crustaceans have been able to go.”
The crab-like body plan also has been lost multiple times over evolutionary time — a process known as decarcinization.
“Crabs are flexible and versatile,” Luque explained. “They can do a lot of things back and forth.”
Wolfe thinks of crabs and other crustaceans like Lego creations: They have many different components that can be swapped out without dramatically changing other features. So it’s relatively straightforward for a cylindrical body to flatten out, or vice versa. But for better or worse, humans won’t be turning into crabs anytime soon. “Our body isn’t modular like that,” Wolfe said. “[Crustaceans] already have the right building blocks.”





Science
Rocket Lab Launches Second Batch of TROPICS Satellites


|
Ibadan, 29 May 2023. – Rocket Lab USA, Inc. has successfully completed the second of two dedicated Electron launches to deploy a constellation of tropical cyclone monitoring satellites for NASA. The “Coming To A Storm Near You” launch lifted off on May 26 at 15:46 NZST (03:46 UTC) from Rocket Lab Launch Complex 1 on New Zealand’s Mahia Peninsula, deploying the final two CubeSats of NASA’s TROPICS constellation to orbit.
“Coming To A Storm Near You” is Rocket Lab’s second of two TROPICS launches for NASA, following the first launch on May 8th NZST. Like the previous launch, “Coming To A Storm Near You” deployed a pair of shoebox-sized satellites to low Earth orbit to collect tropical storm data more frequently than other weather satellites. The constellation aims to help increase understanding of deadly storms and improve tropical cyclone forecasts.
Rocket Lab has now launched all four satellites across two dedicated launches within 18 days, enabling the TROPICS satellites to settle into their orbits and begin commissioning ahead of the 2023 North American storm season, which begins in June.
“Electron was for exactly these kinds of missions – to deploy spacecraft reliably and on rapid timelines to precise and bespoke orbits, so we’re proud to have delivered that for NASA across both TROPICS launches and meet the deadline for getting TROPICS to orbit in time for the 2023 storm season,” said Rocket Lab founder and CEO Peter Beck. “Thank you to the team at NASA for entrusting us with such an important science mission, we’re grateful to be your mission launch providers once again.”
‘Coming To A Storm Near You’ was Rocket Lab’s fifth mission for 2023 and the Company’s 37th Electron mission overall. It brings the total number of satellites launched into orbit by Rocket Lab to 163.





-
News20 hours ago
The Hidden Struggles: Uncovering the Reality of Being Black in Canada
-
Economy21 hours ago
Lira hits record low, but stocks rise after Erdogan win in Turkey
-
Business21 hours ago
Halifax condo residents face obstacles trying to go green with solar panels
-
Media18 hours ago
Russia says U.S. Senator should say if Ukraine took his words out of context
-
Health20 hours ago
B.C. initiative aims to expand genetic screening for Ashkenazi Jewish people at risk of hereditary cancers
-
News17 hours ago
More Canadian companies adopt ‘stay interviews’ amid push to retain staff
-
Real eState19 hours ago
BCFSA rules on real estate agent’s $50K loan to client
-
Health23 hours ago
Coming to Terms with My Baby’s Food Allergies