Science
NASA Reveals Ambitious New Plan to Detect Signs of Life on Distant Planets – ScienceAlert


NASA’s Institute for Advanced Concepts is famous for supporting outlandish ideas in the astronomy and space exploration fields. Since being re-established in 2011, the institute has supported a wide variety of projects as part of its three-phase program.
However, so far, only three projects have gone on to receive Phase III funding. And one of those just released a white paper describing a mission to get a telescope that could effectively see biosignatures on nearby exoplanets by utilizing the gravitational lens of our own Sun.
That Phase III distinction comes with US$2 million in funding, which in the case went to JPL, whose scientist, Slava Turyshev, was the principal investigator on the project’s first two phases.
He teamed up with The Aerospace corporation for this latest white paper, which describes a mission concept in more detail and defines what technologies already exist and what needs further development.
However, there are several striking features of this mission design, one of which is touched on in detail over at Centauri Dreams.
Instead of launching a large craft that would take a long time to travel anywhere, the proposed mission would launch several small cube-sats and then self-assemble on the 25-year journey out to the solar gravitational lens (SGL) point.
That “point” is actually a straight line between whatever star the exoplanet is around and somewhere between 550-1000 AU on the other side of the Sun. That is a tremendous distance, much further than the measly 156 AU that Voyager 1 has so far taken 44 years to traverse.
So how could a spacecraft get to three times the distance while taking almost half the time? Simple – it will dive (almost) into the Sun.
Using a gravitational boost from the Sun is a tried and true method. The fastest human-made object ever, the Parker Solar Probe, used just such a technique.
However, being boosted to 25 AU a year, the expected speed at which this mission would have to travel isn’t easy. And it would be even more challenging for a fleet of ships rather than just a single one.
The first problem would be material – solar sails, which are the mission’s preferred method of propulsion, don’t do so well when subjected to the intensity of the Sun that would be required for a gravitational slingshot.
In addition, the electronics on the system would have to be much more radiation hardened than currently existing tech. However, both of these known problems have potential solutions under active research.
Another seemingly obvious problem would be how to coordinate a passage of multiple satellites through this sort of gut-wrenching gravitational maneuver and still allow them to coordinate joining up to effectively form a fully functional spacecraft in the end.
But according to the paper’s authors, there will be more than enough time on the 25-year journey out to the observational point to actively rejoin the single Cubesats into a cohesive whole.
What could result from that cohesive whole is a better image of an exoplanet that humanity is likely to get short of a fully-fledged interstellar mission.
Which exoplanet would be the best candidate would be a topic of hot debate if the mission moves forward, as more than 50 so far have been found in the habitable zones of their stars. But that is certainly no guarantee as yet.
The mission hasn’t received any funding nor any indication that it will do so in the near future. And plenty of technologies would still have to be developed before such a mission would even be feasible.
But that is precisely how such missions always start, and this one has more potential impact than most. With luck, at some point in the next few decades, we would receive as crisp of an image of a potentially habitable exoplanet as we are likely to receive in the even medium future.
The team behind this research deserves praise for laying the groundwork for such an idea in the first place.
This article was originally published by Universe Today. Read the original article.
Science
Planets on parade: 5 will be lined up in night sky this week – Ottawa.CityNews.ca

Keep an eye on the sky this week for a chance to see a planetary hangout.
Five planets — Mercury, Jupiter, Venus, Uranus and Mars — are scheduled to line up near the moon.
WHERE AND WHEN CAN YOU SEE THEM?
The best day to catch the whole group is Tuesday. You’ll want to look to the western horizon right after sunset, said NASA astronomer Bill Cooke.
The planets will stretch from the horizon line to around halfway up the night sky. But don’t be late: Mercury and Jupiter will quickly dip below the horizon around half an hour after sunset.
The five-planet spread can be seen anywhere on Earth, as long as you have clear skies and a west view.
“That’s the beauty of these planetary alignments. It doesn’t take much,” Cooke said.
DO I NEED BINOCULARS?
Maybe. Jupiter, Venus and Mars will all be pretty easy to see since they shine brightly, Cooke said. Venus will be one of the brightest things in the sky, and Mars will be hanging out near the moon with a reddish glow. Mercury and Uranus could be trickier to spot, since they will be dimmer. You’ll probably need to grab a pair of binoculars.
If you’re a “planet collector,” it’s a rare chance to spot Uranus, which usually isn’t visible, Cooke said. Look out for its green glow just above Venus.
DOES THIS HAPPEN OFTEN?
Different numbers and groups of planets line up in the sky from time to time. There was a five-planet lineup last summer and there’s another one in June, with a slightly different makeup.
This kind of alignment happens when the planets’ orbits line them up on one side of the sun from Earth’s perspective, Cooke said.
Science
Joint NASA, CNES Water-Tracking Satellite Reveals First Stunning Views – Space Ref


This visualization shows water features on New York’s Long Island – shown as bright pink splotches. Purple, yellow, green, and dark blue shades represent different land elevations, while the surrounding ocean is a lighter blue. The data was collected on Jan. 21, 2023, by SWOT’s KaRIn instrument. Credit: NASA/JPL-Caltech
The Surface Water and Ocean Topography mission offers the first taste of the detailed perspectives of Earth’s surface water that its cutting-edge instruments will be able to capture.
The international Surface Water and Ocean Topography (SWOT) mission – led by NASA and the French space agency Centre National d’Études Spatiales (CNES) – has sent back some of its first glimpses of water on the planet’s surface, showing ocean currents like the Gulf Stream in unprecedented detail. SWOT is also capturing views of freshwater features such as lakes, rivers, and other water bodies down to about 300 feet (100 meters) wide.
The satellite will measure the elevation of nearly all the water on Earth’s surface and provide one of the most comprehensive surveys yet of our planet’s surface water. SWOT’s measurements of freshwater bodies and the ocean will provide insights into how the ocean influences climate change and the water cycle; how a warming world affects water storage in lakes, rivers, and reservoirs; and how communities can better manage their water resources and prepare for floods and other disasters.
“SWOT’s advanced imagery will empower researchers and advance the way we manage fresh water and the effects of sea level rise across the globe,” said NASA Administrator Bill Nelson. “Water is one of our planet’s most important resources – and it’s proven to be vulnerable to the impacts of climate change. SWOT will provide critical information that communities can use to prepare for the impacts of a warming climate.”
A Whole New View
As seen in these early images, on Jan. 21, 2023, SWOT measured sea level in a part of the Gulf Stream off the coast of North Carolina and Virginia. The two antennas of SWOT’s Ka-band Radar Interferometer (KaRIn) instrument acquired data that was mapped as a pair of wide, colored strips spanning a total of 75 miles (120 kilometers) across. Red and orange areas in the images represent sea levels that are higher than the global average, while the shades of blue represent sea levels that are lower than average.
For comparison, the new data is shown alongside sea surface height data taken by space-based instruments called altimeters. The instruments – widely used to measure sea level – also bounce radar signals off of Earth’s surface to collect their measurements. But traditional altimeters are able to look only at a narrow beam of Earth directly beneath them, unlike KaRIn’s two wide-swath strips that observe sea level as a two-dimensional map.
The spatial resolution of SWOT ocean measurements is 10 times greater than the composite of sea surface height data gathered over the same area by seven other satellites: Sentinel-6 Michael Freilich, Jason-3, Sentinel-3A and 3B, Cryosat-2, Altika, and Hai Yang 2B. The composite image was created using information from the Copernicus Marine Service of ESA (European Space Agency) and shows the same day as the SWOT data.
KaRIn also measured the elevation of water features on Long Island – shown as bright pink splotches nestled within the landscape. (Purple, yellow, green, and blue shades represent different land elevations.)
“Our ability to measure freshwater resources on a global scale through satellite data is of prime importance as we seek to adjust to a changing climate,” said CNES Chairman and CEO Philippe Baptiste. “In this respect, the first views from SWOT give us a clearer picture than ever before. These data will prove highly valuable for the international scientific community in the fields of hydrology, oceanography, and coastal studies.”
This initial inland image is a tantalizing indication of how SWOT can measure details of smaller lakes, ponds, and rivers in ways that satellites could not before. Such data will be used to produce an extraordinary accounting of the freshwater on Earth’s surface in ways useful to researchers, policymakers, and water resource managers.
“The KaRIn instrument took years to develop and build, and it will collect information on bodies of water across the globe – data that will be freely and openly available to everybody who needs it,” said Parag Vaze, SWOT project manager at NASA’s Jet Propulsion Laboratory in Southern California.
More About the Mission
Launched on Dec. 16, 2022, from Vandenberg Space Force Base in central California, SWOT is now in a period of commissioning, calibration, and validation. Engineers are checking out the performance of the satellite’s systems and science instruments before the planned start of science operations in summer 2023.
The data for these first images was collected by SWOT’s KaRIn instrument, the scientific heart of the satellite. KaRIn has one antenna at each end of a boom that’s 33 feet (10 meters) long. This enables the instrument to look off to either side of a center line directly below the satellite as it bounces microwave signals off Earth’s surface. The returning radar signals arrive at each antenna slightly out of sync, or phase, from one another. When these signals are combined with other information about the antennas and the satellite’s altitude, scientists will be able to map the height of water on Earth’s surface with never-before-seen clarity. KaRIn encountered an issue earlier this year with one of its subsystems; engineers have now resolved the situation, and the instrument is up and running.
SWOT was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. JPL, which is managed for NASA by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the KaRIn instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. CNES provided the Doppler Orbitography and Radioposition Integrated by Satellite (DORIS) system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations. CSA provided the KaRIn high-power transmitter assembly. NASA provided the launch vehicle and the agency’s Launch Services Program, based at Kennedy Space Center, managed the associated launch services.
To learn more about SWOT, visit: https://swot.jpl.nasa.gov/
Science
Severe solar storm hits Earth, strongest in past 6 years – Indiatimes.com


The Earth witnessed a powerful solar storm in nearly six years, causing auroras all over the US, the National Oceanic and Atmospheric Administration (NOAA) said. NOAA had earlier announced moderate G2 storm and G3 conditions between March 23 and 25, but updated it to G4. A severe G4 storm can affect the power grid system with possible widespread voltage control problems; and spacecraft operations with increased possibility of surface charging, and atmospheric drag risk on Low Earth Orbiting (LEO) satellites.
-
Investment20 hours ago
First Republic Bank Stock: Why I Am Sticking To My Investment (NYSE:FRC)
-
Investment21 hours ago
The A.I. boom could also give a boost to these investing trends. How to play it
-
Business20 hours ago
Thousands without power after Ontario windstorm
-
News23 hours ago
Canada is set for its largest alcohol tax increase yet. Here’s what to know
-
Media20 hours ago
Utah is first US state to limit teen social media access
-
Health23 hours ago
HPHA to close COVID, cold and flu clinics
-
Investment23 hours ago
Media advisory – Government of Canada to make investment in Canada’s semiconductor industry
-
Science20 hours ago
Parade of five planets on display in B.C. skies Tuesday evening