adplus-dvertising
Connect with us

Science

The power of earthworm poop and how it could influence climate change – CBC.ca

Published

 on


There is a confounding mystery wrapped up in the tiny turds of two different types of earthworms, and the secrets locked inside are influencing climate change around the world.

Scientists say some earthworm species are potentially speeding up climate change by feeding on leaves, then pooping out a mix that’s fodder to tiny microbes and fungi that spew carbon into the atmosphere. By contrast, other worms are helping lock carbon in soil.

Canada is ground zero for this paradox. Earthworm populations are growing as warmer temperatures allow the invertebrates to move farther north than ever before.

And no one knows exactly how much carbon they are helping release into the atmosphere.

“Some of the early work has shown that they could have as much of an impact as, let’s say, wildfire,” said Sylvie Quideau, a professor of soil biogeochemistry at the University of Alberta.

It’s possible, she said, worms in Canada could release millions of tonnes of carbon into the atmosphere in a year, but that estimate is still subject to a lot of uncertainties, including the rate of earthworm invasion across the country.

Sylvie Quideau, a professor of soil biogeochemistry at the University of Alberta, says early work on earthworms show ‘they could have as much of an impact as, let’s say, wildfire.’ (Submitted by Sylvie Quideau)

The most common earthworms that live in leaf litter, on forest floors or in the top layers of soil are called Dendrobaena octaedra. They eat plant debris, and their poop, also known as casts, is more easily broken down by microbes and fungi that then release carbon dioxide.

“Microbes find earthworm poop very attractive,” said Quideau.

The more earthworms there are, the more plant debris is broken down at a faster rate and the more carbon gets released into the atmosphere.

This kind of carbon being released from Canada’s boreal forests is new, according to Quideau, since earthworms are not native to the country. They were wiped out during the last ice age.

The earthworms here now, save for some found in British Columbia, are invasive species transported into forests when Europeans arrived or brought them in from the United States as fishing bait.

“Earthworms can both be allies and enemies,” said Joann Whalen, a professor in the department of natural resource sciences at Montreal’s McGill University who has studied earthworms for 20 years. 

In agriculture, earthworms are beneficial, said Whalen: They help make soil more fertile, and allow water and roots to more easily enter the ground. 

In spring, it is common to see spherical lumps of earth on the soil surface. These earthworm casts are a mixture of soil and organic residues that all earthworm species poop out or egest onto the soil surface. The white object is a toonie, to give an idea of the cast size. (Submitted by Joann Whalen)

In the boreal forest, worms can do more harm than good. 

Some eat the leaf litter covering the forest floor, and many plant seeds need that thick covering to grow in. Without it, the seeds can’t take root, said Whalen, which means earthworms can reduce plant diversity in the forest.

But earthworms aren’t all bad. There are some burrowing species that actually trap carbon in the soil, because their poop binds it more tightly and makes it harder for microbes to break down.

Often sold as fishing bait, Lumbricus terrestris is a common deep-burrowing earthworm found in Canada. It can be identified by the small mounds of earth it leaves on lawns or in forests.

How much carbon is being trapped by these worms and whether it’s enough to offset the carbon other worms are helping release isn’t clear. Finding the answer to that question is part of Quideau’s research.

“What keeps me up at night is wondering if I can quantify their effect on climate change,” she said.

‘Earthworms can both be allies and enemies,’ says Joann Whalen, a professor in the department of natural resource sciences at Montreal’s McGill University. (Submitted by Joann Whalen)

Whalen isn’t losing any sleep over worms. She said the carbon dioxide coming from decomposing plant material is a natural process, and worms help it.

“I’d be more concerned about what people are doing in terms of utilizing fossil carbon that had been buried for millennia and is now being released into the atmosphere.”

Still, in Canada, the earthworm invasion continues.

Erin Cameron, an assistant professor in the department of environmental science at Saint Mary’s University in Halifax, has been monitoring the invasion’s progress since 2006. 

In northern Alberta, she’s been studying how fast earthworms are spreading, and has discovered they are moving north at a rate of 17 metres a year. The earthworm population appears to have grown as well.

Dendrobaena octaedra is one of the most common earthworms that live in the leaf litter on the forest floor or in the top layers of soil. (Submitted by Erin Cameron)

The most abundant kind of earthworm she finds live in leaf litter or in the top layers of soil, the ones that help release carbon into the air.

“Earthworms may benefit from warmer temperatures in Canada’s North, for example, because that may currently be restricting the distributions of some species,” said Cameron.

So as climate change continues to warm the country, earthworms could continue to become more abundant and possibly drive more climate change.

Erin Cameron, an assistant professor in the department of environmental science at Saint Mary’s University, has been monitoring the earthworm invasion’s progress since 2006. (Submitted by Erin Cameron)

Quideau doesn’t think there’s anything that can be done to stop the worm march through Canada.

“What’s important is that we can understand, quantify their effect better so that we can project better in the future what their influence will be. There might be ways then to manage a forest.”

She and other researchers hope to do just that in the next few years. They want to crack the secret of earthworm poop, and determine how much carbon earthworms release and store in the earth.

MORE TOP STORIES

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

Asteroid Apophis will visit Earth in 2029, and this European satellite will be along for the ride

Published

 on

Asteroid Apophis

The European Space Agency is fast-tracking a new mission called Ramses, which will fly to near-Earth asteroid 99942 Apophis and join the space rock in 2029 when it comes very close to our planet — closer even than the region where geosynchronous satellites sit.

Ramses is short for Rapid Apophis Mission for Space Safety and, as its name suggests, is the next phase in humanity’s efforts to learn more about near-Earth asteroids (NEOs) and how we might deflect them should one ever be discovered on a collision course with planet Earth.

In order to launch in time to rendezvous with Apophis in February 2029, scientists at the European Space Agency have been given permission to start planning Ramses even before the multinational space agency officially adopts the mission. The sanctioning and appropriation of funding for the Ramses mission will hopefully take place at ESA’s Ministerial Council meeting (involving representatives from each of ESA’s member states) in November of 2025. To arrive at Apophis in February 2029, launch would have to take place in April 2028, the agency says.

This is a big deal because large asteroids don’t come this close to Earth very often. It is thus scientifically precious that, on April 13, 2029, Apophis will pass within 19,794 miles (31,860 kilometers) of Earth. For comparison, geosynchronous orbit is 22,236 miles (35,786 km) above Earth’s surface. Such close fly-bys by asteroids hundreds of meters across (Apophis is about 1,230 feet, or 375 meters, across) only occur on average once every 5,000 to 10,000 years. Miss this one, and we’ve got a long time to wait for the next.

When Apophis was discovered in 2004, it was for a short time the most dangerous asteroid known, being classified as having the potential to impact with Earth possibly in 2029, 2036, or 2068. Should an asteroid of its size strike Earth, it could gouge out a crater several kilometers across and devastate a country with shock waves, flash heating and earth tremors. If it crashed down in the ocean, it could send a towering tsunami to devastate coastlines in multiple countries.

Over time, as our knowledge of Apophis’ orbit became more refined, however, the risk of impact  greatly went down. Radar observations of the asteroid in March of 2021 reduced the uncertainty in Apophis’ orbit from hundreds of kilometers to just a few kilometers, finally removing any lingering worries about an impact — at least for the next 100 years. (Beyond 100 years, asteroid orbits can become too unpredictable to plot with any accuracy, but there’s currently no suggestion that an impact will occur after 100 years.) So, Earth is expected to be perfectly safe in 2029 when Apophis comes through. Still, scientists want to see how Apophis responds by coming so close to Earth and entering our planet’s gravitational field.

“There is still so much we have yet to learn about asteroids but, until now, we have had to travel deep into the solar system to study them and perform experiments ourselves to interact with their surface,” said Patrick Michel, who is the Director of Research at CNRS at Observatoire de la Côte d’Azur in Nice, France, in a statement. “Nature is bringing one to us and conducting the experiment itself. All we need to do is watch as Apophis is stretched and squeezed by strong tidal forces that may trigger landslides and other disturbances and reveal new material from beneath the surface.”

The Goldstone radar’s imagery of asteroid 99942 Apophis as it made its closest approach to Earth, in March 2021. (Image credit: NASA/JPL–Caltech/NSF/AUI/GBO)

By arriving at Apophis before the asteroid’s close encounter with Earth, and sticking with it throughout the flyby and beyond, Ramses will be in prime position to conduct before-and-after surveys to see how Apophis reacts to Earth. By looking for disturbances Earth’s gravitational tidal forces trigger on the asteroid’s surface, Ramses will be able to learn about Apophis’ internal structure, density, porosity and composition, all of which are characteristics that we would need to first understand before considering how best to deflect a similar asteroid were one ever found to be on a collision course with our world.

Besides assisting in protecting Earth, learning about Apophis will give scientists further insights into how similar asteroids formed in the early solar system, and, in the process, how  planets (including Earth) formed out of the same material.

One way we already know Earth will affect Apophis is by changing its orbit. Currently, Apophis is categorized as an Aten-type asteroid, which is what we call the class of near-Earth objects that have a shorter orbit around the sun than Earth does. Apophis currently gets as far as 0.92 astronomical units (137.6 million km, or 85.5 million miles) from the sun. However, our planet will give Apophis a gravitational nudge that will enlarge its orbit to 1.1 astronomical units (164.6 million km, or 102 million miles), such that its orbital period becomes longer than Earth’s.

It will then be classed as an Apollo-type asteroid.

Ramses won’t be alone in tracking Apophis. NASA has repurposed their OSIRIS-REx mission, which returned a sample from another near-Earth asteroid, 101955 Bennu, in 2023. However, the spacecraft, renamed OSIRIS-APEX (Apophis Explorer), won’t arrive at the asteroid until April 23, 2029, ten days after the close encounter with Earth. OSIRIS-APEX will initially perform a flyby of Apophis at a distance of about 2,500 miles (4,000 km) from the object, then return in June that year to settle into orbit around Apophis for an 18-month mission.

Related Stories:

Furthermore, the European Space Agency still plans on launching its Hera spacecraft in October 2024 to follow-up on the DART mission to the double asteroid Didymos and Dimorphos. DART impacted the latter in a test of kinetic impactor capabilities for potentially changing a hazardous asteroid’s orbit around our planet. Hera will survey the binary asteroid system and observe the crater made by DART’s sacrifice to gain a better understanding of Dimorphos’ structure and composition post-impact, so that we can place the results in context.

The more near-Earth asteroids like Dimorphos and Apophis that we study, the greater that context becomes. Perhaps, one day, the understanding that we have gained from these missions will indeed save our planet.

 

728x90x4

Source link

Continue Reading

Science

McMaster Astronomy grad student takes a star turn in Killarney Provincial Park

Published

 on

Art News Canada

Astronomy PhD candidate Veronika Dornan served as the astronomer in residence at Killarney Provincial Park. She’ll be back again in October when the nights are longer (and bug free). Dornan has delivered dozens of talks and shows at the W.J. McCallion Planetarium and in the community. (Photos by Veronika Dornan)

Veronika Dornan followed up the April 8 total solar eclipse with another awe-inspiring celestial moment.

This time, the astronomy PhD candidate wasn’t cheering alongside thousands of people at McMaster — she was alone with a telescope in the heart of Killarney Provincial Park just before midnight.

Dornan had the park’s telescope pointed at one of the hundreds of globular star clusters that make up the Milky Way. She was seeing light from thousands of stars that had travelled more than 10,000 years to reach the Earth.

This time there was no cheering: All she could say was a quiet “wow”.

Dornan drove five hours north to spend a week at Killarney Park as the astronomer in residence. part of an outreach program run by the park in collaboration with the Allan I. Carswell Observatory at York University.

Dornan applied because the program combines her two favourite things — astronomy and the great outdoors. While she’s a lifelong camper, hiker and canoeist, it was her first trip to Killarney.

Bruce Waters, who’s taught astronomy to the public since 1981 and co-founded Stars over Killarney, warned Dornan that once she went to the park, she wouldn’t want to go anywhere else.

The park lived up to the hype. Everywhere she looked was like a painting, something “a certain Group of Seven had already thought many times over.”

The dome telescopes at Killarney Provincial Park.

She spent her days hiking the Granite Ridge, Crack and Chikanishing trails and kayaking on George Lake.  At night, she went stargazing with campers — or at least tried to. The weather didn’t cooperate most evenings — instead of looking through the park’s two domed telescopes, Dornan improvised and gave talks in the amphitheatre beneath cloudy skies.

Dornan has delivered dozens of talks over the years in McMaster’s W.J. McCallion Planetarium and out in the community, but “it’s a bit more complicated when you’re talking about the stars while at the same time fighting for your life against swarms of bugs.”

When the campers called it a night and the clouds parted, Dornan spent hours observing the stars. “I seriously messed up my sleep schedule.”

She also gave astrophotography a try during her residency, capturing images of the Ring Nebula and the Great Hercules Cluster.

A star cluster image by Veronika Dornan

“People assume astronomers take their own photos. I needed quite a lot of guidance for how to take the images. It took a while to fiddle with the image properties, but I got my images.”

Dornan’s been invited back for another week-long residency in bug-free October, when longer nights offer more opportunities to explore and photograph the final frontier.

She’s aiming to defend her PhD thesis early next summer, then build a career that continues to combine research and outreach.

“Research leads to new discoveries which gives you exciting things to talk about. And if you’re not connecting with the public then what’s the point of doing research?”

 

728x90x4

Source link

Continue Reading

Science

Where in Vancouver to see the ‘best meteor shower of the year’

Published

 on

Eyes to the skies, Vancouver, because between now and September 1st, stargazers can witness the ‘best meteor shower of the year’ according to NASA.

Known for its “long wakes of light and colour,” the Perseid Meteor Shower will peak on August 12th, 2024 – so consider this list a great place to start if you’re in search of a prime stargazing spots!

Grab your lawn chairs and blankets, and seek as little light pollution as possible. Here are some ideal stargazing spots to check out in and around Vancouver this summer.

Recent Posts:
This island with clear waters has one of the prettiest towns in BC
10 beautiful lake towns to visit in BC this summer

Wreck Beach

If you’re willing to brave the stairs and the regulars, it doesn’t get much better than Wreck Beach for watching the skies – for both sunsets and stargazing. The west-facing views practically eliminate immediate distractions from the city lights.

Spanish Banks Park

Spanish Banks is the perfect mixture of convenience and quality. Its location offers unobstructed views of the skies above, and it’s far enough away from downtown to mitigate some of the light pollution.

Burnaby Mountain Park

If it’s good enough for a university observatory, it’s good enough for us. Pretty much anywhere on Burnaby Mountain will offer tremendous viewpoints, but the higher you get the better (safely).

Porteau Cove

A short drive from Vancouver gets you incredible views of the Howe Sound from directly on the water. And naturally, its distance from any nearby community makes it a prime spot for stargazing.

Cypress Mountain

In addition to having one of the best viewpoints in Vancouver period, Cypress Mountain (and the road up to it) is also a great place to watch the sky. For a double-whammy, we say that you come around sunset, then hang out while the sky gets dark. Sure, it might take a few hours, but the view is worth it.

So there you have it, stargazers! Get ready to witness a dazzling show this summer.

 

728x90x4

Source link

Continue Reading

Trending