Connect with us

Science

We've imaged a black hole's magnetic field for the first time – here's what it reveals – The Conversation UK

Published

 on


There was a lot of excitement when the Event Horizon Telescope collaboration showed the world the first ever image of a black hole back in April 2019. Weighing in at 6.5 million times the mass of our Sun, this supermassive black hole is located in the galaxy Messier 87, or M87, some 55 million light years away from Earth.

This was the first direct evidence that black holes exist. It also provided an extraordinary test of Einstein’s theory of gravity and its underlying notions of space and time – probing gravity in its most extreme limits. But we still don’t know much about these monsters.

Now, nearly two years on from this historical achievement, we have unveiled a new image of M87 using a different technique. Our research, published in two new papers in The Astrophysical Journal Letters, is providing important insights into the mysterious nature of black holes.

Seeing the invisible

Due to its distance from us, imaging this behemoth of a black hole is enormously challenging. It requires a resolution sharp enough to focus on an orange on the surface of the Moon, or being able to see individual atoms in one’s own finger. The telescope manged this thanks to an unprecedented collaboration between scientists across the globe, linking together eight ground-based radio telescopes and transforming the Earth into one giant virtual radio telescope.

Black holes are perhaps the most enigmatic objects in nature, powering some of the most energetic – and unobservable – phenomena in our universe. Due to their event horizon, the boundary beyond which nothing, not even light, can escape, we cannot see a black hole directly. But matter that falls towards a black hole is drawn in by its immense gravitational pull and becomes extremely hot and luminous.

First ever image of a black hole.
Event Horizon Telescope, CC BY-SA

As it approaches the event horizon, this matter is super heated by friction and moves close to the speed of light, emitting copious amounts of radiation. It is radiation in the form of radio waves produced by this gas moments before it crosses the event horizon that the telescope is designed to detect.

New image

The image of M87’s black hole provided overwhelming support for the idea that supermassive black holes lurk in the hearts of most (if not all) galaxies. They are the glue holding galaxies together and governing their dynamics and evolution. But exactly how they operate is unclear.

Our new image uses polarised light – light waves oscillating in only one direction – produced by matter at the edge of the black hole. Unpolarised light is made up of light waves oscillating in many different directions. Light can become polarised if it moves through super hot regions of space that are highly magnetised. The strong magnetic fields present around the black hole are such regions and through studying the properties of this polarised light we can learn much more about the matter which produced it.

[embedded content]

Our new polarised image gives compelling new evidence for how strong magnetic fields around black holes can launch and sustain concentrated jets of charged gas over thousands of light years. We now think that such highly energetic and bright jets, launching enormous amounts of matter into the intergalactic medium, are connected to black holes through these strong magnetic fields.

Astronomers have invoked different models to explain how matter behaves near the black hole to better understand this process of jet formation, but they still do not know exactly how jets larger than the galaxy itself can be launched from its central region, nor how exactly matter falls into the black hole. We now find that only theoretical models featuring strongly magnetised matter can explain what is seen at the event horizon.

Our observations provide new, detailed information about the structure of the magnetic fields just outside the black hole. Not only does this bring us a step closer to understanding how these mysterious and powerful jets are produced, it also explains how some ultra hot matter can lurk outside a black hole, resisting its gravity. Our research suggests that the magnetic fields are strong enough to push back on the hot gas and help it resist gravity’s pull. Only the gas that slips through the field can start flowing inwards to the event horizon.

As exciting as these new polarised images of M87’s black hole are, it is still only the beginning for the Event Horizon Telescope collaboration and the science of black hole imaging. We are already working on what the image of the black hole that resides in the centre of our own Galaxy would look like, which we hope to publish later this year. This is Sagittarius A*, or Sgr A*, our galaxy’s supermassive black hole.

Compared to M87, this new image is much more challenging to obtain. We are looking at the black hole through our blurry, turbulent interstellar medium – there’s a large amount of dust and gas in the way – making it significantly harder to take a clear picture. In the years to come, new telescopes will be added to the Event Horizon Telescope array, both on Earth, and eventually even in space, promising ever sharper images of black holes and providing a much more intimate understanding of these enigmatic entities.

There will be many more surprises in store. This is an exciting new era in humankind’s exploration of strong gravity and the nature of space and time, and undoubtedly the best is yet to come.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

NASA clears Boeing Starliner for July 30th test flight to ISS – Yahoo Movies Canada

Published

 on


More than 18 months after its failed first attempt to make it to the International Space Station, Boeing’s Starliner is ready for a second shot. Following a flight readiness review, NASA is moving forward with the craft’s upcoming July 30th uncrewed orbital flight test. Unless there’s an unforeseen delay, the capsule will launch from the Space Force’s Cape Canaveral Station mounted on an Atlas V rocket at 2:53PM ET. Should NASA postpone the flight, it will again attempt to carry out the test on August 3rd at the earliest.

The purpose of the flight is for NASA to conduct an end-to-end test of Starliner’s capabilities. It wants to know if the capsule can handle every aspect of a trip to the ISS, including launch, docking as well as atmospheric re-entry. “[Orbital Flight Test-2] will provide valuable data that will help NASA certify Boeing’s crew transportation system to carry astronauts to and from the space station,” the agency said.

If the flight is a success, NASA will move forward with a crewed test of the Starliner. Steve Stich, commercial crew program manager at NASA, said that could happen “as soon as later this year.” Both Boeing and NASA have a lot invested in the viability of Starliner. For the aerospace company, its decision not to conduct an end-to-end test of the craft before its failed 2019 flight left the agency “surprised,” leading to questions about the project. Meanwhile, NASA is keen to have two capsules that can ferry its astronauts to the ISS. Right now, it’s limited to just SpaceX’s Crew Dragon. “It’s very important for the commercial crew program to have two space transportation systems,” Stich told reporters.

Adblock test (Why?)



Source link

Continue Reading

Science

SpaceX lands NASA launch contract for mission to Jupiter's moon Europa – Euronews

Published

 on


By Steve Gorman

LOSANGELES – Elon Musk’s private rocket company SpaceX was awarded a $178 million launch services contract for NASA‘s first mission focusing on Jupiter’s icy moon Europa and whether it may host conditions suitable for life, the space agency said on Friday.

The Europa Clipper mission is due for blastoff in October 2024 on a Falcon Heavy rocket owned by Musk’s company, Space Exploration Technologies Corp, from NASA‘s Kennedy Space Center in Florida, NASA said in a statement posted online.

The contract marked NASA‘s latest vote of confidence in the Hawthorne, California-based company, which has carried several cargo payloads and astronauts to the International Space Station for NASA in recent years.

In April, SpaceX was awarded a $2.9 billion contract to build the lunar lander spacecraft for the planned Artemis program that would carry NASA astronauts back to the moon for the first time since 1972.

But that contract was suspended after two rival space companies, Jeff Bezos’s Blue Origin and defense contractor Dynetics Inc, protested against the SpaceX selection.

The company’s partly reusable 23-story Falcon Heavy, currently the most powerful operational space launch vehicle in the world, flew its first commercial payload into orbit in 2019.

NASA did not say what other companies may have bid on the Europa Clipper launch contract.

The probe is to conduct a detailed survey of the ice-covered Jovian satellite, which is a bit smaller than Earth’s moon and is a leading candidate in the search for life elsewhere in the solar system.

A bend in Europa’s magnetic field observed by NASA‘s Galileo spacecraft in 1997 appeared to have been caused by a geyser gushing through the moon’s frozen crust from a vast subsurface ocean, researchers concluded in 2018. Those findings supported other evidence of Europa plumes.

Among the Clipper mission’s objectives are to produce high-resolution images of Europa’s surface, determine its composition, look for signs of geologic activity, measure the thickness of its icy shell and determine the depth and salinity of its ocean, NASA said.

Adblock test (Why?)



Source link

Continue Reading

Science

NASA’s Europa Clipper will fly on SpaceX’s Falcon Heavy – The Verge

Published

 on


NASA’s Europa Clipper will start its journey to Jupiter’s icy moon aboard a Falcon Heavy rocket built by SpaceX. NASA will pay SpaceX $178 million to launch the vehicle in October 2024.

The Europa Clipper got the green light from NASA in 2015. It will fly by the moon 45 times, providing researchers with a tantalizing look at the icy world, believed to have an ocean lurking under its icy crust. The Clipper is equipped with instruments that will help scientists figure out if the moon could support life.

For years, the Clipper was legally obligated to launch on NASA’s long-delayed Space Launch System (SLS). But with the SLS perpetually delayed and over budget, NASA has urged Congress to consider allowing the Europa Clipper to fly commercial. Switching to another vehicle could save up to $1 billion, NASA’s inspector general said in 2019.

NASA got permission to consider commercial alternatives to the SLS in the 2021 budget, and started officially looking for a commercial alternative soon after.

The SLS has powerful allies in Congress, who have kept the costly program alive for years, even as it blew past budgets and deadlines. The first flight of the SLS was originally supposed to happen in 2017. That mission — launching an uncrewed trip around the Moon — has since been pushed to November 2021, and keeping to that new schedule remains “highly unlikely” according to NASA’s Office of Inspector General, a watchdog agency.

SpaceX first launched its Falcon Heavy rocket in 2018, and started flying satellites in 2019. Earlier this year, NASA selected the rocket as the ride to space for two parts of a planned space station orbiting the Moon.

Adblock test (Why?)



Source link

Continue Reading

Trending