Connect with us

Science

Maxar Delivers Spacecraft Bus for NASA's Psyche Mission – Investing News Network

Published

 on


The Solar Electric Propulsion chassis will power Psyche on 1 billion-mile journey to a metal-rich asteroid Maxar Technologies a trusted partner and innovator in Earth Intelligence and Space Infrastructure, today announced the delivery of the Solar Electric Propulsion Chassis to NASA’s Jet Propulsion Laboratory for the NASA Discovery Mission, Psyche. The SEP Chassis is based on Maxar’s 1300-class platform, the …

The Solar Electric Propulsion chassis will power Psyche on 1 billion-mile journey to a metal-rich asteroid

Maxar Technologies (NYSE:MAXR) (TSX:MAXR), a trusted partner and innovator in Earth Intelligence and Space Infrastructure, today announced the delivery of the Solar Electric Propulsion (SEP) Chassis to NASA’s Jet Propulsion Laboratory (JPL) for the NASA Discovery Mission, Psyche. The SEP Chassis is based on Maxar’s 1300-class platform, the world’s most trusted spacecraft, which provided NASA the opportunity to budget, design and build the historic Psyche mission on flight-proven, commercially developed hardware.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20210329005715/en/

Maxar engineers prepare the Psyche spacecraft bus for transport to NASA's Jet Propulsion Lab. (Photo: Business Wire)

Maxar engineers prepare the Psyche spacecraft bus for transport to NASA’s Jet Propulsion Lab. (Photo: Business Wire)

The NASA Psyche mission is expected to launch in August 2022 to explore an asteroid orbiting between Mars and Jupiter, which is likely made largely of metal and may be core material from an early planet. The Psyche spacecraft will travel more than 1 billion miles and arrive at the asteroid in 2026, where it will spend 21 months orbiting the 140 mile-wide asteroid, mapping it and studying its properties.

The SEP Chassis built for Psyche is Maxar’s lightest and smallest graphite 1300-class spacecraft platform, roughly the size of a small car. It is combined with a medium-sized solar array, a high-gain antenna and Maxar’s latest solar electric propulsion system. The spacecraft has been specifically designed to function in a low-power environment because of the Psyche asteroid’s distance from the sun.

“This mission is a dream come true. Maxar developed the world’s most advanced solar electric propulsion capabilities to reduce program costs and enable long-duration missions for commercial communications satellites,” said Robert Curbeam, Maxar’s Senior Vice President of Space Capture. “We are excited to leverage this technology for a NASA deep space exploration mission and see great promise for adapting it to support a range of critical government space missions in the future.”

Maxar was selected in 2017 to provide the spacecraft platform for the Psyche mission under a firm-fixed-price contract and has now delivered all hardware on schedule. The company is working for NASA JPL to support the mission’s Principal Investigator Lindy Elkins-Tanton, who is a professor at Arizona State University’s (ASU) School of Earth and Space Exploration.

“Seeing this big spacecraft chassis arrive at JPL from Maxar is among the most thrilling of the milestones we’ve experienced on what has already been a 10-year journey,” said Elkins-Tanton. “Building this complex, precision piece of engineering during the year of COVID is absolutely a triumph of human determination and excellence.”

“The collaboration between the teams at Maxar, ASU and NASA’s JPL has been astounding,” said Curbeam. “Each organization brought their expertise to the program, blending philosophies of commercial, government and academic institutions to come together for one mission—to travel to an asteroid to better understand Earth.”

In addition to Psyche, Maxar is also leveraging both its 1300-class platform and SEP technology for the NASA Gateway Power and Propulsion Element under the Artemis Program. The 1300-class platform has also been selected for NASA Goddard Spaceflight Center’s OSAM-1 mission and will host NASA’s Tropospheric Emissions: Monitoring of Pollution ( TEMPO ) instrument.

View photographs of the Psyche spacecraft here .

About Maxar

Maxar is a trusted partner and innovator in Earth Intelligence and Space Infrastructure. We deliver disruptive value to government and commercial customers to help them monitor, understand and navigate our changing planet; deliver global broadband communications; and explore and advance the use of space. Our unique approach combines decades of deep mission understanding and a proven commercial and defense foundation to deploy solutions and deliver insights with unrivaled speed, scale and cost effectiveness. Maxar’s 4,300 team members in over 20 global locations are inspired to harness the potential of space to help our customers create a better world. Maxar trades on the New York Stock Exchange and Toronto Stock Exchange as MAXR. For more information, visit www.maxar.com .

Forward-Looking Statements

Certain statements and other information included in this release constitute “forward-looking information” or “forward-looking statements” (collectively, “forward-looking statements”) under applicable securities laws. Statements including words such as “may”, “will”, “could”, “should”, “would”, “plan”, “potential”, “intend”, “anticipate”, “believe”, “estimate” or “expect” and other words, terms and phrases of similar meaning are often intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Forward-looking statements involve estimates, expectations, projections, goals, forecasts, assumptions, risks and uncertainties, as well as other statements referring to or including forward-looking information included in this presentation.

Forward-looking statements are subject to various risks and uncertainties which could cause actual results to differ materially from the anticipated results or expectations expressed in this presentation. As a result, although management of the Company believes that the expectations and assumptions on which such forward-looking statements are based are reasonable, undue reliance should not be placed on the forward-looking statements because the Company can give no assurance that they will prove to be correct. The risks that could cause actual results to differ materially from current expectations include, but are not limited to, the risk factors and other disclosures about the Company and its business included in the Company’s continuous disclosure materials filed from time to time with U.S. securities and Canadian regulatory authorities, which are available online under the Company’s EDGAR profile at www.sec.gov , under the Company’s SEDAR profile at www.sedar.com or on the Company’s website at www.maxar.com .

The forward-looking statements contained in this release are expressly qualified in their entirety by the foregoing cautionary statements. All such forward-looking statements are based upon data available as of the date of this presentation or other specified date and speak only as of such date. The Company disclaims any intention or obligation to update or revise any forward-looking statements in this presentation as a result of new information or future events, except as may be required under applicable securities legislation.

Investor Relations Contact:
Jason Gursky
Maxar VP, Investor Relations and Corporate Treasurer
1-303-684-2207
jason.gursky@maxar.com

Media Contact:
Abby Dickes
Maxar Manager, Government Marketing & Communications
202-750-0914
abby.dickes@maxar.com

News Provided by Business Wire via QuoteMedia

Robotics Will Change Everything! Can You Afford To Miss Out In The Robotics Market?

Leading-Edge Expert Advice In One Free Report To Help Prepare You For The Future.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

SpaceX lands NASA launch contract for mission to Jupiter's moon Europa – Euronews

Published

 on


By Steve Gorman

LOSANGELES – Elon Musk’s private rocket company SpaceX was awarded a $178 million launch services contract for NASA‘s first mission focusing on Jupiter’s icy moon Europa and whether it may host conditions suitable for life, the space agency said on Friday.

The Europa Clipper mission is due for blastoff in October 2024 on a Falcon Heavy rocket owned by Musk’s company, Space Exploration Technologies Corp, from NASA‘s Kennedy Space Center in Florida, NASA said in a statement posted online.

The contract marked NASA‘s latest vote of confidence in the Hawthorne, California-based company, which has carried several cargo payloads and astronauts to the International Space Station for NASA in recent years.

In April, SpaceX was awarded a $2.9 billion contract to build the lunar lander spacecraft for the planned Artemis program that would carry NASA astronauts back to the moon for the first time since 1972.

But that contract was suspended after two rival space companies, Jeff Bezos’s Blue Origin and defense contractor Dynetics Inc, protested against the SpaceX selection.

The company’s partly reusable 23-story Falcon Heavy, currently the most powerful operational space launch vehicle in the world, flew its first commercial payload into orbit in 2019.

NASA did not say what other companies may have bid on the Europa Clipper launch contract.

The probe is to conduct a detailed survey of the ice-covered Jovian satellite, which is a bit smaller than Earth’s moon and is a leading candidate in the search for life elsewhere in the solar system.

A bend in Europa’s magnetic field observed by NASA‘s Galileo spacecraft in 1997 appeared to have been caused by a geyser gushing through the moon’s frozen crust from a vast subsurface ocean, researchers concluded in 2018. Those findings supported other evidence of Europa plumes.

Among the Clipper mission’s objectives are to produce high-resolution images of Europa’s surface, determine its composition, look for signs of geologic activity, measure the thickness of its icy shell and determine the depth and salinity of its ocean, NASA said.

Adblock test (Why?)



Source link

Continue Reading

Science

NASA’s Europa Clipper will fly on SpaceX’s Falcon Heavy – The Verge

Published

 on


NASA’s Europa Clipper will start its journey to Jupiter’s icy moon aboard a Falcon Heavy rocket built by SpaceX. NASA will pay SpaceX $178 million to launch the vehicle in October 2024.

The Europa Clipper got the green light from NASA in 2015. It will fly by the moon 45 times, providing researchers with a tantalizing look at the icy world, believed to have an ocean lurking under its icy crust. The Clipper is equipped with instruments that will help scientists figure out if the moon could support life.

For years, the Clipper was legally obligated to launch on NASA’s long-delayed Space Launch System (SLS). But with the SLS perpetually delayed and over budget, NASA has urged Congress to consider allowing the Europa Clipper to fly commercial. Switching to another vehicle could save up to $1 billion, NASA’s inspector general said in 2019.

NASA got permission to consider commercial alternatives to the SLS in the 2021 budget, and started officially looking for a commercial alternative soon after.

The SLS has powerful allies in Congress, who have kept the costly program alive for years, even as it blew past budgets and deadlines. The first flight of the SLS was originally supposed to happen in 2017. That mission — launching an uncrewed trip around the Moon — has since been pushed to November 2021, and keeping to that new schedule remains “highly unlikely” according to NASA’s Office of Inspector General, a watchdog agency.

SpaceX first launched its Falcon Heavy rocket in 2018, and started flying satellites in 2019. Earlier this year, NASA selected the rocket as the ride to space for two parts of a planned space station orbiting the Moon.

Adblock test (Why?)



Source link

Continue Reading

Science

Researchers Develop Genome Techniques to Analyze Adaptation of Cattle – AZoCleantech

Published

 on



Jared Decker, a fourth-generation cattle farmer, has been aware of cattle suffering from health and productivity problems when they are moved from one location to another. The shift is from a region where they had spent generations to another place with a different climate, grass, or elevation.

Jared Decker is on a mission to help farmers learn more about what their cattle need to thrive. Image Credit: University of Missouri.

Decker, as a researcher at the University of Missouri, looks at the chances of using science to resolve this issue, thereby serving a dual purpose to enhance the cattle’s welfare and sealing the leak in an almost $50 billion industry in the United States.

When I joined MU in 2013, I moved cattle from a family farm in New Mexico to my farm here in Missouri. New Mexico is hot and dry, and Missouri is also hot but has much more humidity. The cattle certainly didn’t do as well as they did in New Mexico, and that spurred me to think about how we could give farmers more information about what their animals need to thrive.

Jared Decker, Associate Professor and Wurdack Chair, Animal Genetics, College of Agriculture, Food and Natural Resources 

The study was published in the journal PLOS Genetics on July 23rd, 2021.

Decker and his research team have revealed the proof exposing the fact that cattle are losing their key environmental adaptations. The researchers regard this as a loss due to the lack of genetic information available to farmers.

After assessing the genetic materials dating back to the 1960s, the team determined particular DNA variations linked with adaptations that could someday be used to develop DNA tests for cattle. These tests could help educate the farmers regarding the adaptability of cattle from one environment or another.

We can see that, for example, historically cows in Colorado are likely to have adaptations that ease the stress on their hearts at high altitudes. But if you bring in bulls or semen from a different environment, the frequency of those beneficial adaptations is going to decrease. Over generations, that cow herd will lose advantages that would have been very useful to a farmer in Colorado.

Jared Decker, Associate Professor and Wurdack Chair, Animal Genetics, College of Agriculture, Food and Natural Resources, University of Missouri

The research team included then-doctoral student Troy Rowan who had examined 60 years’ worth of bovine DNA data from tests of cryo-preserved semen produced by cattle breed associations. They observed that, as time runs, the genes related to higher fertility and productivity increased as a result of careful selection by farmers. Also, many genes relating to environmental adaptations have decreased.

According to Decker, the farmers are not to be blamed as there are no affordable methods available at present to identify the suitability of cattle for a specific environment. The study also proposes easy-to-use cattle DNA tests that focus on the particular adaptations identified in the study.

Such adaptations include resistance to vasoconstriction, which is a process of blood vessel narrowing that takes place at high elevation and puts excessive stress on the heart. Also creating resistance to the toxin in the grass can result in vasoconstriction and tolerance for increased temperature or humidity. All these factors tend to decline over generations when the cattle are shifted from the associated surroundings.

Sometimes, natural and artificial selection are moving in the same direction, and other times there is a tug of war between them. Efficiency and productivity have vastly improved in the last 60 years, but environmental stressors are never going to go away. Farmers need to know more about the genetic makeup of their herd, not only for the short-term success of their farm, but for the success of future generations.

Jared Decker, Associate Professor and Wurdack Chair, Animal Genetics, College of Agriculture, Food and Natural Resources

The first widely adopted genetic test for cattle was developed at the University of Missouri in 2007. Decker and Rowan are looking forward to giving further details of the development. Both the researchers grew up on farms with a desire to use research to help farmers to balance farm traditions of America with the requirement for eco-friendly business practices.

As a society, we must produce food more sustainably and be good environmental stewards. Making sure a cow’s genetics match their environment makes life better for cattle and helps farmers run efficient and productive operations. It’s a win-win,” concluded Decker.

Journal Reference:

Rowan, T. N., et al. (2021) Powerful detection of polygenic selection and evidence of environmental adaptation in US beef cattle. PLOS Genetics. doi.org/10.1371/journal.pgen.1009652.

Source: https://missouri.edu/

Adblock test (Why?)



Source link

Continue Reading

Trending