Connect with us

Science

VIDEO: SpaceX capsule with 4 astronauts reaches space station – Terrace Standard

Published

 on


A SpaceX Falcon9 rocket, with the Crew Dragon capsule attached, lift’s off from Kennedy Space Center’s Launch Complex 39-A Sunday Nov. 15, 2020, in Cape Canaveral, Fla. Four astronauts are beginning a mission to the international Space Station. (AP Photo/Chris O’Meara)
In this frame grab from NASA TV, astronauts Mike Hopkins, left, and Victor Glover monitor controls aboard SpaceX Dragon as the capsule approaches the International Space Station, late Monday, Nov. 16, 2020. (NASA TV via AP)In this frame grab from NASA TV, astronauts Mike Hopkins, left, and Victor Glover monitor controls aboard SpaceX Dragon as the capsule approaches the International Space Station, late Monday, Nov. 16, 2020. (NASA TV via AP)
In this frame grab from NASA TV, the SpaceX Dragon is seen after docking at the International Space Station, late Monday, Nov. 16, 2020. (NASA TV via AP)In this frame grab from NASA TV, the SpaceX Dragon is seen after docking at the International Space Station, late Monday, Nov. 16, 2020. (NASA TV via AP)

SpaceX’s newly launched capsule with four astronauts arrived Monday at the International Space Station, their new home until spring.

The Dragon capsule pulled up and docked late Monday night, following a 27-hour, completely automated flight from NASA’s Kennedy Space Center. The linkup occurred 262 miles (422 kilometres) above Idaho.

“Oh, what a good voice to hear,” space station astronaut Kate Rubins called out when the Dragon’s commander, Mike Hopkins, first made radio contact.

“We can’t wait to have you on board,” she added after the two spacecraft were latched together.

This is the second astronaut mission for SpaceX. But it’s the first time Elon Musk’s company delivered a crew for a full half-year station stay. The two-pilot test flight earlier this year lasted two months.

The three Americans and one Japanese astronaut will remain at the orbiting lab until their replacements arrive on another Dragon in April. And so it will go, with SpaceX — and eventually Boeing — transporting astronauts to and from the station for NASA.

This regular taxi service got underway with Sunday night’s launch.

Hopkins and his crew — Victor Glover, Shannon Walker and Japan’s Soichi Noguchi — join two Russians and one American who flew to the space station last month from Kazakhstan. Glover is the first African-American to move in for a long haul. A space newcomer, Glover was presented his gold astronaut pin Monday.

The four named their capsule Resilience to provide hope and inspiration during an especially difficult year for the whole world. They broadcast a tour of their capsule Monday, showing off the touchscreen controls, storage areas and their zero gravity indicator: a small plush Baby Yoda.

Walker said it was a little tighter for them than for the two astronauts on the test flight.

“We sort of dance around each other to stay out of each other’s way,” she said.

For Sunday’s launch, NASA kept guests to a minimum because of coronavirus, and even Musk had to stay away after tweeting that he “most likely” had an infection. He was replaced in his official launch duties by SpaceX President Gwynne Shotwell, who assured reporters he was still very much involved with Sunday night’s action, although remotely.

As they prepared for the space station linkup, the Dragon crew beamed down live window views of New Zealand and a brilliant blue, cloud-streaked Pacific 250 miles below.

“Looks amazing,” Mission Control radioed from SpaceX headquarters in Hawthorne, California.

“It looks amazing from up here, too,” Hopkins replied.

___

The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute’s Department of Science Education. The AP is solely responsible for all content.

Marcia Dunn, The Associated Press


Like us on Facebook and follow us on Twitter.

Want to support local journalism during the pandemic? Make a donation here.

astronautAviation and spacevideo

Get local stories you won’t find anywhere else right to your inbox.
Sign up here


<!– View Comments –>

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Earth Is a Whole Lot Closer to Our Galaxy's Supermassive Black Hole Than We Thought – ScienceAlert

Published

 on


It seems that Earth has been misplaced.

According to a new map of the Milky Way galaxy, the Solar System’s position isn’t where we thought it was. Not only is it closer to the galactic centre – and the supermassive hole therein, Sagittarius A* – it’s orbiting at a faster clip.

It’s nothing to be concerned about; we’re not actually moving closer to Sgr A*, and we’re in no danger of being slurped up. Rather, our map of the Milky Way has been adjusted, more accurately identifying where we have been all along.

And the survey beautifully demonstrates how tricky it is to map a galaxy in three dimensions from inside it.

It’s a problem that has long devilled our understanding of space phenomena. It’s relatively easy to map the two-dimensional coordinates of stars and other cosmic objects, but the distances to those objects is a lot harder to figure out.

And distances are important – they help us determine the intrinsic brightness of objects. A good recent example of this is the red giant star Betelgeuse, which turned out to be closer to Earth than previous measurements suggested. This means that it’s neither as large nor as bright as we thought.

Another is the object CK Vulpeculae, a star that exploded 350 years ago. It’s actually much farther away, which means that the explosion was brighter and more energetic, and requires a new explanation, since previous analyses were performed under the assumption it was relatively low energy.

But we’re getting better at calculating those distances, with surveys using the best available technology and techniques working hard to refine our three-dimensional maps of the Milky Way, a field known as astrometry. And one of these is the VERA radio astronomy survey, conducted by the Japanese VERA collaboration.

VERA stands for VLBI (Very Long Baseline Interferometry) Exploration of Radio Astrometry, and it uses a number of radio telescopes across the Japanese archipelago, combining their data to effectively produce the same resolution as a telescope with a 2,300 kilometre- (1,430 mile-) diameter dish. It’s the same principle behind the Event Horizon Telescope that produced our very first direct image of a black hole’s shadow.

VERA, which started observing in 2000, is designed to help us calculate the distances to radio-emitting stars by calculating their parallax. With its incredible resolution, it observes these stars for over a year, and watches how their position changes relative to stars that are much farther away as Earth orbits the Sun.

(National Astronomical Observatory of Japan)

This change in position can then be used to calculate how far a star is from Earth, but not all parallax observations are created equal. VLBI can produce much higher resolution images; VERA has a breathtaking angular resolution of 10 millionths of an arcsecond, which is expected to produce extraordinarily high precision astrometry measurements.

And this is what astronomers have used to refine our Solar System’s position in the Milky Way. Based on the first VERA Astrometry Catalog of 99 objects released earlier this year, as well as other observations, astronomers created a position and velocity map of those objects.

From this map, they calculated the position of the galactic centre.

In 1985, the International Astronomical Union defined the distance to the galactic centre as 27,700 light-years. Last year, the GRAVITY collaboration recalculated it and found it closer, just 26,673 light-years away.

solar system gc(National Astronomical Observatory of Japan)

The VERA-based measurements bring it closer still, to a distance of just 25,800 light-years. And the Solar System’s orbital speed is faster, too – 227 kilometres (141 miles) per second, rather than the official velocity of 220 kilometres (137 miles) per second.

That change may not seem like much, but it could have an impact on how we measure and interpret activity in the galactic centre – ultimately, hopefully, leading to a more accurate picture of the complex interactions around Sgr A*.

Meanwhile, the VERA collaboration is forging ahead. Not only is it continuing to make observations of objects in the Milky Way, it’s joining up with an even larger project, the East Asian VLBI Network. Together, astronomers hope, the telescopes involved in this project could provide measurements of unprecedented accuracy.

The Vera Astrometry Catalog was published in the Publications of the Astronomical Society of Japan.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Earth just got 2,000 light-years closer to Milky Way's supermassive black hole – CNET

Published

 on


20201126-mizusawa-fig

Earth is a little closer to the supermassive black hole at the center of the Milky Way than we believed.


NAOJ

At the center of the our galaxy there’s a supermassive black hole called Sagittarius A*. It has a mass roughly 4 million times that of our sun.

Great news! It turns out scientists have discovered that we’re 2,000 light-years closer to Sagittarius A* than we thought.

This doesn’t mean we’re currently on a collision course with a black hole. No, it’s simply the result of a more accurate model of the Milky Way based on new data.

Over the last 15 years, a Japanese radio astronomy project, VERA, has been gathering data. Using a technique called interferometry, VERA gathered data from telescopes across Japan and combined them with data from other existing projects to create what is essentially the most accurate map of the Milky Way yet. 

By pinpointing the location and velocity of around 99 specific points in our galaxy, VERA has concluded that the supermassive black hole Sagittarius A, at the center of our galaxy, is actually 25,800 light-years from Earth — almost 2,000 light-years closer than what we previously believed. 

In addition, the new model calculates Earth is moving faster than we believed. Older models clocked Earth’s speed at 220 kilometers (136 miles) per second, orbiting around the galaxy’s centre. VERA’s new model has us moving at 227 kilometers (141 miles) per second.

Not bad!

VERA is now hoping to increase the accuracy of its model by increasing the amount of points it’s gathering data from by expanding into EAVN (East Asian VLBI Network) and gathering data from a larger suite of radio telescopes located throughout Japan, Korea and China. 

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Scientists find neutrinos from star fusion for the first time – Engadget

Published

 on


Neutrino detection in INFN Gran Sasso Laboratories' facility


INFN

Researchers have effectively confirmed one of the most important theories in star physics. NBC News reports that a team at the Italian National Institute for Nuclear Physics has detected neutrinos traced back to star fusion for the first time. The scientists determined that the elusive particles passing through its Borexino detector stemmed from a carbon-nitrogen-oxygen (CNO) fusion process at the heart of the Sun.

This kind of behavior had been predicted in 1938, but hadn’t been verified until now despite scientists detecting neutrinos in 1956. Borexino’s design was crucial to overcoming that hurdle — its “onion-like” construction and ongoing refinements make it both ultra-sensitive and resistant to unwanted cosmic radiation.

It’s a somewhat surprising discovery, too. CNO fusion is much more common in larger, hotter stars. A smaller celestial body like the Sun only produces 1 percent of its energy through that process. This not only confirms that CNO is a driving force behind bigger stars, but the universe at large.

That, in turn, might help explain some dark matter, where neutrinos could play a significant role. Scientist Orebi Gann, who wasn’t involved in these findings, also told NBC that an asymmetry between neutrinos and their relevant antiparticles might explain why there isn’t much known antimatter in the universe. To put it another way, the findings could help answer some of the most basic questions about the cosmos.

All products recommended by Engadget are selected by our editorial team, independent of our parent company. Some of our stories include affiliate links. If you buy something through one of these links, we may earn an affiliate commission.

Let’s block ads! (Why?)



Source link

Continue Reading

Trending